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ABSTRACT

Bahrova O.M. ELECTROMECHANICAL PHENOMENA IN
NORMAL AND SUPERCONDUCTING NANOSTRUCTURES
BASED ON A MOVABLE QUANTUM DOT. — Manuscript.

Dissertation for a Doctor of Philosophy degree on speciality 104 – Physics
and Astronomy. — B. Verkin Institute for Low Temperature Physics and Engi
neering, NAS of Ukraine, Kharkiv, 2023.

The dissertation is devoted to the study of new fundamental phenomena
which emerge due to electromechanical coupling in mesoscopic systems based on
movable quantum dot.

In the introduction it is briefly justified the relevance of the dissertation
topic, defined the purpose and main tasks of the research, as well as objects,
subject and research methods. The scientific novelty and practical value of the
obtained results are formulated. The information about the publications, the
personal applicant’s contribution and the approbation of the results of the dis
sertation are discussed. The information about the structure and volume of the
dissertation is also given.

The chapter 1 is devoted to the review and analysis of the literature re
lated to the topic of the dissertation. The main phenomena which arise in the
electron transport through a single-electron transistor, are considered. Namely,
Landauer-Büttiker approach and the Coulomb blockade of electron tunneling are
introduced. The subsection 1.1.2 is devoted to the polaronic effects in transport
of electrons in molecular transistors. In particular, the origin of the Franck-Con
don (polaronic) blockade and polaronic narrowing of the energy level width are
discussed as well as non-monotonic temperature dependence of the differential
conductance. In addition, in the last part of the subsection 1.1.2 a special case
of a non-equilibrium vibron subsystem is briefly considered.

In contrast to the first part of the chapter 1, where influence of the me
chanical vibrations of a quantum dot on the electron transport is discussed, in the
further parts we alternatively take into account the evolution of the mechanical
subsystem under an impact of the tunneling of electrons. Thus, in the section 1.2
the concept of a driven qubit and Landau-Zener-Stückelberg-Majorana formula
for transition probability are introduced. Also, some protocols for quantum error
correction codes and its importance in the further consideration are discussed. In



3

the section 1.3 nature of the mechanical instability phenomenon and key results
are considered.

The chapter 2 is devoted to the derivation and analysis of polaronic effects
which emerge due to the non-equilibrium coherent vibron subsystem.

In the section 2.1 a model device is introduced. A single-molecule transis
tor consists of a big molecule which is placed between two bulk electrodes biased
by a constant voltage. The quantum dot which models the molecule, undergoes
quantum oscillations in the direction perpendicular to the electron transport flow.
It also gated by the gate voltage in order to control the energy of a single-electron
level in the quantum dot.

In the section 2.2 Hamiltonian of the system under consideration is pre
sented and equations for the density matrix of the electronic subsystem are ob
tained.

In the section 2.3 an analytical expression for the electric current through
the single-molecular transistor is derived. In the section 2.4 results of numerical
calculations for the current-voltage characteristics (I-V curves) are presented and
analysed. The correspondence between the current-voltage curves obtained for the
assumption of the vibron subsystem being in coherent (non-equilibrium) state and
Franck-Condon steps for equilibrated vibrons are drawn. It is demonstrated that
in contrast to the Franck-Condon theory, in our case of coherent vibrons steps in
the current-voltage characteristics are completely non-regular. Moreover, for the
vibrons being in coherent state, the current saturates at much lower bias voltages.
This can be effective in experiments which require working in a regime out of the
polaronic blockade, i.e., maximal currents.

In the section 2.5 a quite simple analytical formula for the electric current
is found. The approximation gives high-precision agreement with the main results.

The chapter 3 is devoted to the obtaining and analysis of entanglement
between electronic and mechanical degrees of freedom in a superconducting nano
electromechanical device.

In the section 3.1 a model of the nanoelectromechanical device under con
sideration is introduced. The system consists of a superconducting nanowire sus
pended over two superconducting leads. The nanowire which is treated as a charge
qubit (Cooper pair box), undergoes bending vibrations in the perpendicular to
the nanowire axis direction. Furthermore, the nanowire is capacitively coupled to
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the gate electrodes which allow one to control the difference between the energy
levels of the qubit. Also, the superconducting phase difference between the elec
trodes can be tuned by the constant bias voltage applied to them as a result of
non-stationary (ac) Josephson effect. The Hamiltonian of the system is derived.

In the section 3.2 time evolution of the pure state of the system is found. It
is demonstrated that initial pure state evolves into the state represented by entan
glement between the two qubit states and two coherent states of the mechanical
resonator.

In the section 3.3, which represents the main result of this chapter, we
propose and derive a specific bias voltage manipulation protocol which results in
the formation of entanglement between two states of the charge qubit and two
Schrödinger-cat states (superposition of two coherent states) starting from the
initial pure state. The considered protocol due to its simplicity can effectively
be implemented in experiments with encoding quantum information from the
electronic qubit states to coherent (cat states, in particular) of a nanomechanical
resonator. Moreover, the cat states due to its structure are not sensitive to errors.
Thus, the proposed scheme does not require additional quantum error correction
protocols.

In the section 3.4 the entanglement (von Neumann) entropy is consid
ered in order to quantitatively analyse the entanglement between charge states of
the qubit and coherent states of the nanomechanical resonator. Further, in the
section 3.5 time evolution of the mechanical subsystem is discussed. A clear jus
tification of presence of the entanglement is presented by analysing corresponding
Wigner functions.

In the section 3.6 an experimentally feasible method for the detection of
signatures of the entanglement by measuring average current is discussed.

The chapter 4 is devoted to the derivation and analysis of nanomechanical
phenomena which arise due to proximity effect in the following hybrid nanoelec
tromechanical device. The system under consideration involves a carbon nanotube
suspended above a trench in a normal metal electrode and positioned in a gap
between two superconducting leads. Moreover, the nanotube undergoes bending
vibrations in between two superconducting electrodes in such a way that the bend
ing of the nanotube moves it closer to one electrode and further away from the
other. It results in the position-dependent tunneling amplitudes. In addition,
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due to the presence of superconducting phase difference between the leads, the
off-diagonal order parameter of the quantum dot emerges as a result of supercon
ducting proximity effect. Lastly, the bias voltage applied to the normal electrode
induces directed electron dynamics in the system.

In the section 4.1 the semi-classical approach within the density matrix
approximation is used to obtain and analyse the regime of mechanically unstable
states.

In the subsection 4.1.1 the model of the considered nanoelectromechanical
device and Hamiltonian are introduced. In the subsection 4.1.2 the density
matrix approximation is considered. The system of equation for the density matrix
elements together with the second-order nonlinear differential equation for the
quantum dot displacement is derived. Additionally, in the subsection 4.1.3
the Green function formalism is used to find the quantum dot order parameter
induced by superconducting proximity effect.

In the subsection 4.1.4 the consideration within an adiabatic limit allow
one to simplify the problem to one strongly nonlinear differential equation (which
is the central one in this chapter) for the displacement and analytically analyse it
by using a simple linearization method as in subsection 4.1.5. Furthermore, in
the subsection 4.1.6 the Krylov-Bogoliubov method of averaging is used to find
an approximate solution and analyse regimes in which the nanoelectromechani
cal system under consideration can operate. Two states of mechanical subsystem
are discussed. In particular, it is demonstrated that in the mechanically unstable
regime the limit cycles of self-sustained oscillations occur. Moreover, the self-satu
ration effect takes place. In the subsection 4.1.7 the main results are generalized
to the case of asymmetric tunnel contacts and the influence of a thermodynamic
environment.

In the subsection 4.1.8 a possibility to experimentally detect the mechan
ical instability in the system due to electric current measurements is discussed. It
is demonstrated that the device can operate in transistor and diode regimes.

In the subsection 4.1.9 we discuss numerically calculated time evolution
of the considered system in the diabatic limit which cannot be done analytically.

In the section 4.2 quantum-mechanical fluctuations are taken into account.
It is demonstrated that we can achieve ground-state cooling regime as a result of
the superconducting proximity effect.
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In the subsection 4.2.1 Hamiltonian of the nanoelectromechanical under
consideration is introduced. In the subsection 4.2.2 the system of equations
that describes dynamics in the stationary regime is derived and analysed by using
the Wigner function representation.

In the subsection 4.2.3 the regime of cooling of nanomechanical vibrations
is discussed.

In the subsection 4.2.4 the electric current through the system is dis
cussed. It is demonstrated that the cooling of the mechanical vibrations and
ground-state cooling, particularly, can be experimentally explored via electric
current measurements.

Keywords: Quantum dot (QD), nanoelectromechanical system (NEMS),
molecular transistor, coherent state, proximity effect, qubit.
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АНОТАЦIЯ

Багрова О.М. ЕЛЕКТРОМЕХАНIЧНI ЯВИЩА В
НОРМАЛЬНИХ ТА НАДПРОВIДНИХ НАНОСТРУКТУРАХ
НА ОСНОВI РУХОМОЇ КВАНТОВОЇ ТОЧКИ. — Рукопис.

Дисертацiя на здобуття наукового ступеня доктора фiлософiї за
спецiальнiстю 104 – фiзика та астрономiя. – Фiзико-технiчний iнститут
низьких температур iменi Б.I. Вєркiна НАН України, Харкiв, 2023.

Дисертацiя присвячена вивченню нових фундаментальних явищ, якi
виникають внаслiдок електромеханiчного зв’язку в мезоскопiчних системах
на основi рухомої квантової точки.

У вступi коротко обґрунтовано актуальнiсть теми дисертацiї,
визначено мету та основнi завдання дослiдження, а також об’єкт, предмет
i методи дослiдження. Сформульовано наукову новизну та практичне
значення отриманих результатiв. Наведено вiдомостi про публiкацiї,
особистий внесок здобувача та апробацiю результатiв дисертацiї. Також
приведено вiдомостi про структуру та обсяг дисертацiйної роботи.

Роздiл 1 присвячено огляду та аналiзу лiтератури за темою
дисертацiї. Розглянуто основнi явища, якi виникають при транспортуваннi
електронiв через одноелектронний транзистор. Зокрема, введено пiдхiд
Ландауера-Бюттiкера та поняття кулонiвської блокади тунелювання
електронiв. Пункт 1.1.2 присвячено розгляду поляронних ефектiв
у транспортi електронiв у молекулярних транзисторах. Зокрема,
обговорюється походження блокади Франка-Кондона (поляронної) i
поляронного звуження ширини енергетичного рiвня, а також немонотонна
температурна залежнiсть диференцiальної провiдностi. Окрiм того, в
останнiй частинi пункту 1.1.2 коротко розглянуто окремий випадок
нерiвноважної вiбронної пiдсистеми.

На вiдмiну вiд першої частини роздiлу 1, де обговорюється вплив
механiчних коливань квантової точки на транспорт електронiв, на противагу
цьому в подальших частинах розглядається еволюцiя механiчної пiдсистеми
пiд впливом тунелювання електронiв. Так, у пiдроздiлi 1.2 введено поняття
керованого кубiта та формулу Ландау-Зенера-Штукельберга-Майорани для
ймовiрностi переходу. Крiм того, обговорено деякi протоколи для квантових
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кодiв корекцiї помилок та їх важливiсть для подальшого розгляду. У
пiдроздiлi 1.3 розглянуто природу явища механiчної нестiйкостi.

Роздiл 2 присвячено розгляду та аналiзу поляронних ефектiв, якi
виникають завдяки нерiвноважнiй когерентнiй вiброннiй пiдсистемi.

У пiдроздiлi 2.1 представлено модель системи, що розглядається.
Одномолекулярний транзистор складається з макромолекули, яку розмiщено
мiж двома об’ємними електродами, до яких прикладено постiйну тягнучу
напругу. Квантова точка, яка моделює молекулу, зазнає квантових коливань
у напрямку, перпендикулярному до напрямку переносу електронiв. За
допомогою напруги на затворi виникає можливiсть керування енергiєю
одноелектронного рiвня квантової точки.

У пiдроздiлi 2.2 представлено гамiльтонiан дослiджуваної системи та
отримано рiвняння для матрицi густини електронної пiдсистеми.

У пiдроздiлi 2.3 отримано аналiтичний вираз для електричного
струму через одномолекулярний транзистор. У пiдроздiлi 2.4 наведено
та проаналiзовано результати чисельних розрахункiв вольт-амперних
(I-V ) характеристик (ВАХ). Встановлено вiдповiднiсть мiж ВАХ,
отриманими в припущеннi, що вiбронна пiдсистема перебуває в когерентному
(нерiвноважному) станi, та франк-кондонiвськими сходинками для вiбронiв
у рiвноважному станi. Показано, що на вiдмiну вiд теорiї Франка-Кондона, у
випадку когерентних вiбронiв сходинки на вольт-амперних характеристиках
є нерегулярними. Бiльш того, для когерентного стану вiбронiв струм
насичення виникає при значно менших тягнучих напругах. Останнiй факт
може бути вирiшальним в експериментах, якi вимагають роботи в режимi
зняття поляронної блокади, тобто максимальних струмiв.

У пiдроздiлi 2.5 знайдено аналiтичну формулу для електричного
струму. Наближення дає гарне узгодження з основними чисельними
результатами.

Роздiл 3 присвячено отриманню та аналiзу заплутаностi, яка виникає
мiж електронними та механiчними ступенями свободи в надпровiдному
наноелектромеханiчному пристрої.

У пiдроздiлi 3.1 представлено модель наноелектромеханiчного
пристрою, що розглядається. Система складається з надпровiдного
нанодроту, що пiдвiшений мiж двома надпровiдними електродами. Нанодрiт,
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який розглядається як зарядовий кубiт (сховище куперiвських пар), зазнає
згинальних коливань у напрямку, перпендикулярному до осi нанодроту.
Окрiм того, нанодрiт з’єднаний з електродами затвора за допомогою
ємнiсного зв’язку, що дозволяє керувати вiдстанню мiж енергетичними
рiвнями кубiта. До того ж, рiзниця фаз мiж надпровiдними електродами
може бути пiдлаштована постiйною тягнучою напругою, що прикладена до
них, як результат нестацiонарного ефекту Джозефсона. Також представлено
гамiльтонiан системи.

У пiдроздiлi 3.2 знайдено часову еволюцiю чистого стану системи.
Показано, що початковий чистий стан еволюцiонує до стану, представленого
заплутанiстю мiж двома станами кубiта та двома когерентними станами
механiчного резонатора.

У пiдроздiлi 3.3, який представляє основний результат цього роздiлу,
запропоновано i виведено специфiчний протокол манiпуляцiї тягнучою
напругою, який призводить до утворення заплутаностi мiж двома станами
зарядового кубiта i двома станами типу "Schrödinger cat" (суперпозицiя
двох когерентних станiв), починаючи з чистого стану. Розглянутий протокол
завдяки своїй простотi може бути ефективно реалiзований в експериментах з
кодуванням квантової iнформацiї з електронних станiв кубiта до когерентних
(зокрема, так званих "cat states") наномеханiчного резонатора. До того ж,
"cat states" завдяки своїй структурi не чутливi до виникнення помилок.
Таким чином, запропонована схема не потребує додаткових протоколiв
корекцiї квантових помилок.

У пiдроздiлi 3.4 розглянуто ентропiю заплутаностi (фон Неймана)
з метою кiлькiсного аналiзу заплутаностi мiж зарядовими станами кубiта
i когерентними станами наномеханiчного резонатора. Далi в пiдроздiлi 3.5
обговорено часову еволюцiю механiчної пiдсистеми. Чiтке обґрунтування
наявностi заплутаностi представлено шляхом аналiзу вiдповiдних функцiй
Вiгнера.

У пiдроздiлi 3.6 описано чiткий метод для експериментального
виявлення заплутаностi шляхом вимiрювання середнього струму.

Роздiл 4 присвячено розгляду та аналiзу наномеханiчних явищ,
якi виникають завдяки ефекту близькостi в наступному гiбридному
наноелектромеханiчному пристрої. Система, що розглядається, включає
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вуглецеву нанотрубку, пiдвiшену над канавкою в звичайному металевому
електродi i розмiщену в промiжку мiж двома надпровiдними електродами.
Крiм того, нанотрубка зазнає згинальних коливань мiж двома надпровiдними
електродами таким чином, що згинання нанотрубки перемiщує її ближче
до одного електрода i далi вiд iншого. Це призводить до залежних вiд
положення амплiтуд тунелювання. До того ж, завдяки наявностi рiзницi
фаз мiж надпровiдними електродами, недiагональний параметр порядку
квантової точки виникає в результатi надпровiдного ефекту близькостi.
На додаток, тягнуча напруга, що прикладена до нормального електрода,
спричиняє направлену динамiку електронiв у системi.

У пiдроздiлi 4.1 напiвкласичний пiдхiд в рамках наближення матрицi
густини використано для отримання та аналiзу режиму нестiйких станiв
механiчної пiдсистеми.

У пунктi 4.1.1 вводиться модель дослiджуваного
наноелектромеханiчного пристрою та його гамiльтонiан. У пунктi 4.1.2
розглянуто наближення матрицi густини. Виведено систему рiвнянь для
елементiв матрицi густини разом з нелiнiйним диференцiальним рiвнянням
другого порядку для координати квантової точки. Крiм того, в пунктi
4.1.3 формалiзм функцiй Грiна використано для знаходження параметра
порядку квантової точки, який виникає за рахунок надпровiдного ефекту
близьостi.

У пунктi 4.1.4 розгляд в рамках адiабатичного режиму дозволяє
спростити задачу до одного нелiнiйного диференцiального рiвняння (яке є
центральним у цьому роздiлi) для координати квантової точки i аналiтично
проаналiзувати його за допомогою методу лiнеаризацiї, як у пунктi
4.1.5. Крiм того, в пунктi 4.1.6 використано метод усереднення
Крилова-Боголюбова для знаходження наближеного розв’язку та аналiзу
режимiв, в яких може працювати наноелектромеханiчна система, що
розглядається. Розглянуто два стани механiчної пiдсистеми. Зокрема,
показано, що в механiчно нестiйкому режимi виникають граничнi цикли
самопiдтримних коливань. До того ж, має мiсце ефект самонасичення. У
пунктi 4.1.7 основнi результати узагальнено на випадок несиметричних
тунельних контактiв i впливу термодинамiчного оточення.
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У пунктi 4.1.8 обговорюється можливiсть експериментального
виявлення механiчної нестiйкостi в системi за допомогою вимiрювання
електричного струму. Продемонстровано, що дана система може працювати
в транзисторному та дiодному режимах.

У пунктi 4.1.9 обговорюється чисельно розрахована еволюцiя
розглянутої системи в дiабатичнiй границi, що не може бути зроблено
аналiтично.

У пiдроздiлi 4.2 враховано вплив квантово-механiчних флуктуацiй.
Продемонстровано, що можна досягти режиму охолодження до основного
стану в результатi ефекту близькостi.

У пунктi 4.2.1 введено гамiльтонiан наноелектромеханiчної системи,
що розглядається. У пунктi 4.2.2 виведено систему рiвнянь, яка описує
динамiку в стацiонарному режимi, i проаналiзовано її за допомогою
представлення функцiй Вiгнера.

У пунктi 4.2.3 розглянуто режим охолодження наномеханiчних
коливань.

У пунктi 4.2.4 розглянуто електричний струм через систему.
Показано, що охолодження механiчних коливань i, зокрема, охолодження
до основного стану можна експериментально дослiдити за допомогою
вимiрювання електричного струму.

Ключовi слова: квантова точка, наноелектромеханiчна система,
молекулярний транзистор, когерентний стан, ефект близькостi, кубiт.
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INTRODUCTION

Justification of the relevance of the research topic. Nanotechnology
is in the front of modern science nowadays. State-of-the-art technology allows one
to manipulate with molecular orbitals of a single molecule and to molecule-based
transistors of a high quality. Single-molecule transistors (SMTs) mostly studied in
experiments are a macromolecule (fullerenes or carbon nanotubes)-based device,
where a molecule is tunnel coupled to source and drain electrodes and capacitively
coupled to a gate electrode. As a result of coupling of the mechanical (vibronic)
and electronic degrees of freedom, the transport properties of such a nano-scale
transistor are drastically changed. The main new effect caused by vibrons is the
appearance of inelastic channels of electron tunneling in single-electron transis
tor. For strong electron-vibron interaction the current at low voltages is strongly
suppressed (Franck-Condon or polaronic blockade) and the lifting of this block
ade by bias voltage or by temperature leads to step-like I-V characteristics and
nonmonotonic temperature dependence of conductance. If the vibration excita
tions (vibrons) of the central part of the transistor are coupled to a heat bath and
the vibron relaxation time is much smaller than the characteristic time of electron
tunneling, the vibron subsystem is in equilibrium. The electron transport through
molecular transistors with equilibrated vibrons is usually considered. However,
it is not the case when the coupling of vibron subsystem to the environment is
weak.

On the other hand, nanoelectromechanical systems (NEMS) provide a
promising platform for investigations into the quantum mechanical interplay be
tween mechanical and electronic subsystems. One of the most important phe
nomena providing the foundation of NEMS functionality is the generation of
self-sustained mechanical oscillations by a constant value current flow. Neverthe
less, nanoelectromechanical systems promise to manipulate the mechanical mo
tion of a nano-object using electronic dynamics. There are many approaches to
control nanomechanical performance providing a number of new functionalities
of nano-device operations, in particular, pumping or cooling of the mechanical
subsystem. One of the main approaches exploits the electronic flow through a
nanosystem induced by either the bias voltage or temperature drop between two
electronic reservoirs connected by a quantum dot (QD).
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In general, there are several types of interaction between the electronic and
mechanical subsystems. The most common cause of this interaction is due to local
ization of the electron charge or spin. However, incorporating of superconducting
elements into NEMS allows one to use the coupling based on delocalization of
Cooper pairs, as a foundation for the electro-mechanical performance.

The above range of unresolved issues related to the study of nanoelectrome
chanical systems and polaronic effects in single-electron transistors determines the
relevance of the topic of this dissertation.

Relation to research programs, plans, topics.
The dissertation was performed at the B. Verkin Institute for Low Temper

atures Physics and Engineering of the National Academy of Sciences of Ukraine
within the framework of the thematic plan of the B. Verkin ILTPE of NASU on
department topics: "Theoretical studies of collective phenomena in quantum con
densed structures and nanomaterials" (registration number 0117U002292, code
1.4.10.26.4, the period of execution is 2017-2021), "Theoretical studies of quantum
phenomena in complex low-dimensional condensed matter" (registration number
0122U001505, code 1.4.10.26.5, the period of execution is 2022-2026). Part of
the dissertation work was carried out at the Center for Theoretical Physics of
Complex Systems, Institute for Basic Science, Daejeon, Republic of Korea, as
part of the projects "Condensed matter theory at nanoscale" (IBS-R024-D1) and
"Disorder and chaos in low-dimensional systems" (IBS Young Scientist Fellowship
(IBS-R024-Y3-2021)).

Goal and tasks of the research.
The goal of the dissertation work is a theoretical description of quantum

effects in electron transport in nanoelectromechanical systems and molecular tran
sistors.

To achieve this goal, it was necessary to solve the following tasks :
– to study the electron transport through a single-molecule transistor for

the case when the mechanical subsystem is in a non-equilibrium state, in
particular, the coherent state;

– to obtain the time evolution of a superconducting nanoelectromechanical
system based on a carbon nanotube;

– to study the nature of entanglement between the charge states of the
qubit and coherent states of the nanomechanical oscillator;
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– to study the dynamics of a hybrid nanoelectromechanical device which
arise due to the superconducting proximity effect;

– to obtain regions of the mechanical instability of such a system;
– to study the influence of quantum fluctuations on the steady state of the

hybrid nanomechanical system based on a carbon nanotube.
Object of research of the dissertation is quantum transport of electrons

in nanostructures based on a movable quantum dot.
Subjects of research are mechanical instability and tunneling processes

in nanoelectromechanical systems, in particular, molecular transistors.
Research methods. The results of the dissertation were obtained using

the methods of theoretical condensed matter physics. The density matrix method
and perturbation theory were used to analytically find the regions of mechanical
instability and study polaron effects in nanoelectromechanical systems. Also,
to find the effects associated with coherent oscillations in a molecular transistor,
numerical calculations were performed (solving the system of differential equations
by the Runge-Kutta method).

Scientific novelty of the obtained results.
1. For the first time, electron transport through a single-molecule transistor

was studied for the case when the mechanical subsystem is in a non-equi
librium coherent state, in particular, the current-voltage characteristics
of such a transistor were obtained;

2. For the first time, possibility of generating quantum entanglement be
tween the charge states of the qubit and coherent states of the nanome
chanical resonator using the protocol of bias voltage manipulation was
shown;

3. Quantum dynamics of a hydrid nanoelectromechanical system based on
a carbon nanotube which emerge due to the superconducting proximity
effect was studied for the first time;

4. For the first time, regions of instability for the nanoelectromechanical
system based on a carbon nanotube were found and the self-saturation
phenomenon was obtained, which arise as a result of delocalization of
Cooper pairs due to the proximity effect;

5. For the first time, the effect of ground-state cooling of nanomechanical
vibrations for a nanoelectromechanical system where the electromechan
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ical coupling is of quantum origin — arising from the proximity effect —
was theoretically obtained.

Practical significance of the results.
The results of the research presented in this dissertation are of fundamental

importance, as they deepen and extend the knowledge of electron transport in
nanoelectromechanical systems. The effects predicted in the work, such as self
sustained nanomechanical oscillations and cooling to the ground state of ones, can
be detected in experiments. The obtained protocols for bias voltage manipulation
can be used to encode quantum information between qubit and nano-resonator
states within a single system. Based on the study of electron transport in a single
electron transistor, the basic element of which is a movable quantum dot, more
efficient molecular transistors can be created.

The candidate’s contribution. In all works that were co-authored and
included in the dissertation, the author performed all analytical calculations, par
ticipated in the discussion of the results and wrote the articles. Thus, the personal
contribution of the candidate to the solution of the theoretical problems discussed
in the dissertation is decisive.

Approbation of results of the dissertation. The main results which
this dissertation includes were presented on the following 7 international scientific
conferences:

∙ Physics and Scientific&Technological progress: student scientific confer
ence (Kharkiv, Ukraine, April 10-12, 2018);

∙ I International Advanced Study Conference Condensed matter & Low
Temperature Physics (Kharkiv, Ukraine, June 8-14, 2020);

∙ XI Conference of Young Scientists “Problems of Theoretical Physics”
(Kyiv, Ukraine (online), December 21-23, 2020);

∙ II International Advanced Study Conference Condensed matter & Low
Temperature Physics (Kharkiv, Ukraine, June 6–12, 2021);

∙ The International Symposium on Novel maTerials and quantum Technolo
gies, (Kanagawa, Japan (online), December 14–17, 2021);

∙ Quantum Thermodynamics Conference 2022, (Belfast, United Kingdom
(online), June 27-July 1, 2022);

∙ 29th International Conference on Low Temperature Physics, (Sapporo,
Japan (online), August 18-24, 2022);
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Publications. Results which this dissertation based on have been pub
lished in 4 research papers [1–4] and 6 conference abstracts [5–10].

Structure of the dissertation. The dissertation consists of abstracts,
introduction, review chapter, three original chapters with figures, conclusions,
and bibliography. The total length of the dissertation is 138 pages. It contains
26 figures and bibliography with 210 sources in 21 pages.
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CHAPTER 1

EFFECTS OF ELECTROMECHANICAL COUPLING IN
NANOSCALE SYSTEMS

In this chapter we briefly review main effects emerged in the electron tun
neling in mesoscopic devices.

1.1. Electron transport in single-electron transistors.

In contrast to a conventional transistor, a single-electron transistor (SET)
exhibits some non-trivial features due to relevance of quantum effects. Main phe
nomena that arise in the electron transport in nanoelectrical and nonoelectrome
chanical devices are Coulomb blockade, vibration and shuttle effects, Kondo and
Luttinger liquid effects. In this section we start with a simple model of a SET
and proceed to more complex through the consideration, so that we leave behind
vibration effects in the first subsection, 1.1.1.

A single-electron transistor can be viewed in a simplest model as a quan
tum dot (QD) placed between two bulk source and drain electrodes and gated
by a third electrode, see Fig. 1.1. The central part of the system, i.e., quantum
dot, is a zero-dimensional mesoscopic structure with a discrete energy spectrum.
It can be represented by a metallic grain (island), quantum nanowire (including
a carbon nanotube (CNT)) or a big molecule (like fullerene one). In the latter
case they are usually called by molecular transistors, see subsection 1.1.2. There
are enough comprehend reviews and textbooks on the topic, see, e.g., Refs. [11–
15]. The QD is coupled to bulk (with non-interacting electrons) electrodes by
quantum tunneling processes (tunnel). It means that this system can be con
sidered as one-dimensional double-barrier one (with ballistic transport inside)
which is connected to the reservoirs of electrons. The case when the energy of
tunneling electrons is within the energy window of the tunneling width of the
resonant energy level inside the structure, is refereed to the resonant tunneling.
The completely coherent tunneling process is usually called by resonant quantum
tunneling (RQT). However, when electrons tunnel incoherently to and from in
termediate state (on the QD), such a process is called by sequential tunneling
(ST) [11]. The later is exactly the case we are interested in below. Thus, the
electron transport through such a double-barrier system can be described within
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the Landauer-Büttiker approach [16, 17]. Within this method the average current
𝐼 determined by tunneling events though the system is related to the transmission
coefficient 𝑇 (𝜀),

𝐼(𝑉 ) =
2𝑒

ℎ

∫︁
𝑑𝜀𝑇 (𝜀) [𝑓𝐿(𝜀)− 𝑓𝑅(𝜀)] , (1.1)

where 𝑓𝐿,𝑅 is the Fermi-Dirac distribution function in the Left (source) or Right
(drain) electrode, 𝑓𝐿,𝑅(𝜀) = 1/ [exp {(𝜀− 𝜇𝐿,𝑅)/𝑇}+ 1], 𝜇𝐿,𝑅 is the chemical po
tential, 𝑇 stands for temperature and 𝑒 is the electron charge. For weak tunneling
barriers the transmission coefficient is determined by the Breit-Wigner formula,

𝑇𝐵𝑊 (𝜀) =
Γ2

(𝜀− 𝜀𝑖)2 + Γ2
, (1.2)

where 𝜀𝑖 corresponds to the resonant level energies of the QD (inside the dou
ble-barrier structure), and Γ ∝ |𝑡0|2 is the energy level width witch is associated
with the decay rate of the resonant state, Γ/ℏ, (𝑡0 is the tunneling amplitude).
It is useful also to note that for the linear conductance 𝐺 = 𝐼/𝑉 one can obtain
the following expression from Eq. (1.1) (in the linear response regime, 𝑉 → 0),
which is the well-known Landauer formula for conductance,

𝐺 = 𝐺0

∫︁ ∞

0

𝑑𝜀𝑇 (𝜀)

(︂
−𝜕𝑓
𝜕𝜀

)︂
, (1.3)

where 𝐺0 = 2𝑒2/ℎ is the so-called conductance quantum. From this equation,
Eq. (1.3), one can obtain the high-temperature (𝑇 ≫ Γ) 1/𝑇 scaling of the linear
conductance for sequential electron tunneling, 𝐺 ∝ Γ/𝑇 . Also, Eq. (1.3) can
serve as an ground of the note "conductance is transmission" [18].

The partial derivative in the integrand of Eq. (1.3) gives the temperature
dependence of the conductance, while from transmission coefficient, Eq. (1.2), it
is seen that the conductance has the maxima at 𝜀 = 𝜀𝑖. Here positions of the
peaks defined by the quantum dot energy levels (intrinsic effect) and the chemical
potential in the electrodes (leads). But it is not only the situation. Modern
experimental techniques allow one change parameters of the central part of the
transistor (QD). In particular, using an additional electrode (gate) contact which
create a capacitor with the island, one can change potential of the quantum dot
with respect to leads, so that the energy of the each level in the dot will be shifted
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Fig. 1.1 Schematic representation of a single-electron transistor. A quantum
dot is placed between two bulk electrodes (source and drain) and tunnel couples

(𝑡𝐿,𝑅) to them. The gate voltage is set to manipulate the energy of the QD.

on the value determined by the voltage applied to the gate electrode, 𝑒𝑉𝐺 [19].
As a consequence, the linear differential conductance has a resonant dependence
on the gate voltage. This, for example, brings a possibility to identify a quantum
dot energy spectrum via electric current measurements.

Transport properties of single-electron transistors based on one or several
quantum dots, quantum wires are belong to the hot topic in theoretical as well
as experimental studies, see, e.g., Refs. [20–27].

1.1.1. Coulomb blockade regime of electron tunneling.

In the above consideration we treated the electrons as non-interacting ones.
This assumption can work very well for the macroscopic leads (and we will main
tain it for the electrodes in what follows). However, it is not so for the quantum
dot where one electron can affect its state due to the discreetness of the electron
charge.

The important energy parameter scale is an energy associated with adding
one electron to a neutral quantum dot, i.e., the charging energy, which is an
electrostatic one caused by own capacity 𝐶 of the dot,

𝜀𝐶 =
𝑒2

2𝐶
. (1.4)

It means that at low temperatures, 𝑇 ≪ 𝜀𝐶 , and if the bias voltage applied
to the electrodes is small, 𝑉 < 𝑉𝐶 = 𝑒/2𝐶, the transport of electrons through
the system is completely blocked. This corresponds to the Coulomb blockade ef
fect. There are a lot of literature on the Coulomb blockade phenomena, see, e.g.,
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Refs. [12, 13, 15, 19, 28]. It is important to note that the Coulomb blockade can
be lifted by adjusting the gate voltage 𝑉𝐺 (now in the condition for the resonant
tunneling we need to include the charging energy because when an electron come
to the island, it shifts the energy levels by the value of the charging energy), in
contrast, for example, to the Franck-Condon blockade which we will consider in
details in the next subsection, 1.1.2. This leads to the Coulomb blockade oscilla
tions, i.e., resonant behaviour of the differential conductance with the oscillation
period equals 𝑒/𝐶 (in gate voltage). Also, we should say that if the size of a
QD become very small (the capacity increases), the charging energy start to be
negligible in comparison to the energy spacing between quantized energy levels
on the island. This results in the fact that the Coulomb blockade oscillations are
linear conductance oscillations (as a function of the gate voltage) with the period
determined by the energy level spacing.

The suppression of the electric current through a SET in the Coulomb block
ade regime can be understood in the following ostensive picture. The chemical
potentials of the source and drain electrodes define the so-called "conducting win
dow", so that when we increase the bias voltage, the width of the "window"
became bigger. The resonant transport of electron is possible when (resonant)
energy levels of the QD are within the "conducting window". The gate voltage
allows one to shift the levels with respect to the Fermi energy of the electrodes
and thus bring them to the "conducting window" (or vice versa).

One of the features of the Coulomb blockade phenomenon in single-electron
transistors is the Coulomb staircase of current-voltage characteristics which is
more pronounced in the case of asymmetric tunneling barriers, see, e.g., Ref. [15].
The effect takes place due to the contribution (to the electron transport) of states
with the higher energy at higher bias voltages. It may be clear within the above
mentioned picture of the "conducting window". For example, for a given value of
the gate voltage, the electric current is suppressed at low bias voltages up to the
critical value 𝑉𝐶 , and electrons start to tunnel after that through the first state
on the dot. At higher voltages next electron states became available which results
in a jump of the current. As a consequence, in general case for 𝑛th step for the
the current one finds [15],

𝑉 𝑛
𝐶 =

2(2𝑛− 1)𝜀𝐶
𝑒

. (1.5)
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The heights of the steps drastically decrease withal and a current-voltage depen
dence becames linear at big values of the bias voltage. Also, the temperature
smooths and eventually smears out the steps, i.e., one can estimate a relevant
temperature to observe the effects as 𝑇 ≈ 1𝐾 [22].

A very informative and usually used to present experimental results are sta
bility diagrams. They are contour plots of electric current 𝐼(𝑉,𝑉𝐺) and differential
conductance 𝑑𝐼/𝑑𝑉 (𝑉,𝑉𝐺) dependencies on the bias and gate voltages. In such
plots effects of the Coulomb blockade are clearly seen via the so-called Coulomb
diamonds (the regime of Coulomb blockade corresponds to regions of a diamond
(rhombus) form). It is worth to mention that additional lines (peaks) can be seen
on stability diagrams due to presence of several energy level on a QD (∆𝜀 ≈ 𝜀𝐶 ,
where ∆𝜀 stands for an energy level difference) or due to the influence of vibration
effects (in molecular transistors, see subsection 1.1.2) [22, 29].

As a next point, let us note about a generalization of the Landauer formula
for the electric current, Eq. (1.1). In case of interacting electrons, one usually
uses approaches based on the Green function formalism in order to calculate the
transport properties of such a system. The generalized Landauer-like expression
for the electric current is the following:

𝐼(𝑉 ) =
𝚤𝑒

2𝑒

∫︁
𝑑𝜀Tr{[𝑓𝑙(𝜀)Γ𝐿 − 𝑓𝑅(𝜀)Γ𝑅] (𝐺

𝑟 −𝐺𝑎) + (Γ𝐿 − Γ𝑅)𝐺
<, (1.6)

which is called by the Meir-Wingreen formula obtained using the Keldysh tech
nique (non-equilibrium Green function approach) [30]. In particular, for the case
when partial level width are proportional [30], it has a form:

𝐼(𝑉 ) = −2𝑒

ℎ

∫︁
𝑑𝜀 [𝑓𝐿(𝜀)− 𝑓𝑅(𝜀)]Tr{𝑇 Im𝐺𝑟}. (1.7)

Moreover, this formula was enlarged to the time-dependent electron transport in
Refs. [31, 32]. Here Tr denotes the trace operation, transmission coefficient 𝑇 now
is a matrix, and 𝐺𝑟,𝑎,< is a retarded, advanced, or Keldysh Green function, respec
tively, which is a correlation function with QD operators. For time-independent
case and single-level quantum dot, the retarded Green function has the following
form [11, 31] in the energy representation,

𝐺𝑟(𝜀) = [𝜀− 𝜀0 − Λ(𝜀) + 𝚤Γ(𝜀)]−1 , (1.8)
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where Λ(𝜀) and Γ(𝜀) are the shift and broadening of the energy level (linewidth)
of the quantum dot, 𝜀0 [11, 32]. For the non-interacting electrons in the wide
band approximation [33, 34] (the level width is energy-independent) one gets
from Eq. (1.6) the Landauer formula, Eq. (1.1).

1.1.2. Transport properties of molecular transistors.

A single-molecular transistor (SMT) can be meant as a SET where the
central part of the system is movable. It can be a macromolecule (like fullerene
one) or a quantum nanowire (particularly, a carbon nanotube) placed between
two massive electrodes. Quantitatively new effects arise in transport properties
of such devices (as well as in molecular junctions) due to the electron-vibron
coupling and new phenomena as polaronic effects and the phonon-assisted electron
tunneling, mechanical instability and the electron shuttling come to pass. There
are comprehend reviews on the topic of polaronic effects, see, e.g., Refs. [11, 35,
36]. Thus, in this subsection we only introduce the basic concepts and review
recent achievement in this field, where the vibrons (quants of the QD oscillations)
are associated with a mode unrelated to the direction of the electron tunneling [11].
However, the electron shuttling will be considered in the section 1.3.

Tunneling spectroscopy is a well-known method to study of electron-phonon
interaction in bulk metals (see, e.g., Ref. [37]). Electron transport spec
troscopy can be used for studying of vibration properties of molecules in sin
gle-molecule-based transistors [20, 38]. Current-voltage characteristics of single
electron transistors, where fullerene molecule [20], suspended single-wall carbon
nanotube [22, 39, 40] or carbon nano-peapod [38] are used as a base element,
demonstrate at low temperatures additional sharp features (steps) at bias volt
ages 𝑒𝑉𝑛 ≃ 𝑛ℏ𝜔 (𝜔 is the angular frequency of vibrational degree of freedom).
The simplest models (see, e.g., review Ref. [11]) that describe step-like behavior
of 𝐼 − 𝑉 curves are based, as a rule, on a theory where phonon excitations are
dispersion-less (vibrons with a single frequency) and they are assumed to be in
equilibrium with the heat bath at temperature 𝑇 (bulk metallic electrodes can
play the role of this heat bath). Steps in current-voltage dependencies (equidis
tant peaks in differential conductance) are associated with the opening of inelastic
channels of electron tunneling through vibrating quantum dot. For strong elec
tron-vibron interaction these models predict:
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(i) Franck-Condon blockade [41] (exponential suppression) of conductance
at low temperatures 𝑇 ≪ ℏ𝜔 ,
(ii) non-monotonous temperature dependence of the differential linear con
ductance.

All these effects were observed in experiments with molecular transistors based
on a single fullerene molecule [20] or carbon nanopeapods [38].

The minimal model that describes the effects consists of a vibrating sin
gle-level quantum dot placed between two bulk normal metal electrodes biased by
a constant voltage. The position of the QD energy level is tuned by a gate voltage
(usually, in a way to obtain the maximal current, 𝜀0(𝑉𝐺) = 𝜀𝐹 ). For simplicity let
us firstly consider spinless electrons (non-interacting). The Hamiltonian of such a
system (tunnel model or Anderson-Holstein Hamiltonian) includes the following
parts,

𝐻 = 𝐻𝑙 +𝐻𝑑 +𝐻𝑣 +𝐻𝑖𝑛𝑡 +𝐻𝑡. (1.9)

Here 𝐻𝑙 is the Hamiltonian of non-interacting electrons in the leads 𝜅 = 𝐿,𝑅,

𝐻𝑙 =
∑︁
𝑘𝜅

𝜀𝑘𝜅𝑎
†
𝑘𝜅𝑎𝑘𝜅, (1.10)

where 𝑎†𝑘𝜅(𝑎𝑘𝜅) is the creation (annihilation) electron operator with the standard
anti-commutation relation. In the Hamiltonian of the single-level quantum dot,

𝐻𝑑 = 𝜀0𝑐
†𝑐, (1.11)

𝑐†(𝑐) is the creation (annihilation) operator of the electron state in the QD with
the energy 𝜀𝑑. The vibrational subsystem is descried by the harmonic oscillator
Hamiltonian,

𝐻𝑣 =
𝑝2

2𝑚
+
𝑚𝜔2𝑥2

2
, (1.12)

with the canonically conjugate operators of coordinate and momentum, [𝑥,𝑝] = 𝚤ℏ.
The electron-vibron interaction Hamiltonian reads as follows

𝐻𝑖𝑛𝑡 = ∆𝑥𝑐†𝑐. (1.13)
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The tunnel Hamiltonian is the following,

𝐻𝑡 =
∑︁
𝑘𝜅

𝑡𝜅𝑎
†
𝑘𝜅𝑐+ H.c., (1.14)

where 𝑡𝜅 is the tunneling amplitude which we consider in the symmetric case,
𝑡𝐿 = 𝑡𝑅 = 𝑡0, for simplicity in what follows. The case of position-dependent
tunneling amplitude will be taken into account in the section 1.3.

In order to diagonalize the Hamiltonian, Eq. (1.9), one can perform the
unitary Lang-Firsov [42] or "small polaron" [11] transformation,

𝑉 = exp [𝚤𝜆𝑝𝑐†𝑐], (1.15)

with 𝜆 = ∆/ℏ𝑚𝜔2 is the electron-vibron coupling constant. After this transfor
mation we get the re-normalization of the tunneling amplitude as follows

𝐻𝑡 → 𝐻𝑡 =
∑︁
𝑘𝜅

𝑡0e−𝚤𝜆𝑝𝑎†𝑘𝜅𝑐+ H.c., (1.16)

and shift (decrease) of the electron energy in a vibrating QD is known as the pola
ronic shift, 𝜀𝑝 = 𝜀𝑑−𝜆2ℏ𝜔, see, e.g., Refs. [11, 36, 41, 43], and the electron-vibron
bound state is called by the polaron one.

There are several approaches to calculate transport trough a single-molec
ular transistor, such as, equation of motion (EOM) method [44], master equa
tion [11] using the Fermi Golden rule, Keldysh technique [30, 41], or density
matrix approximation [45]. However, in all these methods one of the crucial point
is how to treat electron-vibron correlations in the averaging procedure. The usual
approach which is valid in the perturbation theory over the small parameter of the
electron level width (small junction transparency), is to disregard correlations be
tween electrons and vibrons and evaluate the averages with the Hamiltonian of the
non-interacting vibrons or with fermion art of the Hamiltonian for the fermionic
averages [11]. Even so, one needs to be accurate in the considering of regimes of
the transport within the validity of the perturbation theory because some of the
results can become questionable [46]. Also, it is a usual assumption to take into
account the case of the strong coupling of the vibrons to bosonic environment
(heat bath with a temperature 𝑇 ) so that the process of the equilibration of their
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distribution function is sufficiently fast (faster than the time corresponding to a
tunneling event) [11]. The main average one needs to calculate is a correlation
function with exponential function of the vibron operators. It can be done via
several methods, see, e.g., Ref. [47], where the Feynman disentangling of opera
tors technique is well explained. Moreover, it is convenient to use the well-known
Campbell-Baker-Hausdorff-Dynkin formula. The result of the calculations of the
correlation functions is the following [11, 41, 43, 47, 48],

⟨e∓𝚤𝜆𝑝(𝑡)e±𝚤𝜆𝑝(𝑡′)⟩0 =
+∞∑︁

𝑛=−∞
𝐴𝑛e−𝚤𝜔𝑛(𝑡−𝑡′), (1.17)

where ⟨. . . ⟩0 indicates averaging with the vibron equilibrium distribution function
(density matrix which has the Gibbs form), and

𝐴𝑛 = e−𝜆2(1+𝑛𝐵)𝐼𝑛(𝑧)e−𝑛𝜔/(2𝑇 ), (1.18)

with the normalization condition
∑︀

𝑛𝐴𝑛 = 1. In this equation 𝐼𝑛(𝑧) is the modi
fied Bessel function of the first kind [49], 𝑧 = 2𝜆2

√︀
𝑛𝐵(1 + 𝑛𝐵), where 𝑛𝐵 is the

Bose-Einstein distribution function,

𝑛𝐵 = 1/
[︁
eℏ𝜔/𝑇 − 1

]︁
. (1.19)

Then for the electric current, using, for example, the Meir-Wingreen formula,
Eq. (1.7), we get the following expression [46],

𝐼(𝑉 ) = − 𝑒
ℎ

e−𝜆2(1+2𝑛𝐵)
+∞∑︁

𝑛=−∞
𝐼𝑛e−𝑛𝜔/(2𝑇 )

∫︁
𝑑𝜀𝑇 𝑛

𝐵𝑊 (𝜀) [𝑓𝐿(𝜀)− 𝑓𝑅(𝜀)] , (1.20)

witch is presented in the form of the sum over the inelastic vibron channels, and
now the Breit-Wigner transmission coefficient reads as

𝑇 𝑛
𝐵𝑊 =

Γ2

(𝜀− 𝜀𝑝 + 𝑛ℏ𝜔)2 + Γ2
. (1.21)

By analyzing Eq. (1.20), one can conclude several features in the electron
transport due to the electron-vibron coupling. Firstly, the appearance of inelas
tic resonant channels for electron tunneling with emission (𝑛 < 0) or absorption
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(𝑛 > 0) of vibrons. This is associated with the so-called phonon-assisted tunnel
ing. As a consequence, the current-voltage characteristics of a molecular transistor
at low temperatures are step-like functions (see, e.g., Fig. 2.2). Hence, each step
(Franck-Condon step) corresponds to the opening of new inelastic channel for
electron tunneling when the bias voltage increase (more inelastic channels enter
the "conducting window"). Secondly, for sufficiently (𝜆 ≳ 1) strong electron-vi
bron interaction, the electric current is extremely suppressed at low temperatures
and low bias voltages (see, e.g., Fig. 2.2). This effect is refereed to the Franck
-Condon [41] or polaronic blockade [11]. And the important point here that this
blockade cannot be lifted via tuning the gate voltage as it is for the Coulomb
blockade. Also, the electron-vibron coupling results in the non-monotonic tem
perature dependence of the linear conductance due to the polaronic narrowing of
the QD energy level width Γ,

𝐺𝜆(𝑇 ) ∝ 𝐺0(𝑇 )e−𝜆2

, (1.22)

for the low temperatures, Γ ≪ 𝑇 ≪ ℏ𝜔. In Equation (1.22), 𝐺0 = Γ/𝑇 is the
high-temperature conductance through a unmovable single-level quantum dot.

As a next step let us take into account the electron spin. It is easy to include
in the Hamiltonian, Eq. (1.9), spin 𝜎 =↑ , ↓, degree of freedom, and add the term
corresponding to the Coulomb interaction (with the strength 𝑈) on the QD,

𝐻𝑈 = 𝑈𝑐†↑𝑐↑𝑐
†
↓𝑐↓. (1.23)

Thus, the unitary transformation, Eq. (1.15), results in the re-normalization of the
Coulomb interaction strength, 𝑈𝑝 = 𝑈−2𝜆2ℏ𝜔. We can see, that this may lead to
the Coulomb attraction case for strong electron-vibron interaction, 𝑈 < 2𝜆2ℏ𝜔.
However, this case needs special consideration [50]. All the features we have
been discussed for spinless electron remain in presence of the electron-electron
interaction.

In Ref. [51] in molecular transistors made from 𝐶140 fullerene molecules, the
vibration-assisted tunneling associated with an internal stretching mode of the
molecule was observed, see also Refs. [20, 22]. The strong coupling of this mode
to tunneling electrons, relative to the other molecular modes, is consistent with
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molecular modeling. Variations in the measured strength of vibration-assisted
tunneling between different devices are presented [51].

In a recent paper, Ref. [43], the transport properties of a single-molecular
transistor with the spin-polarized leads was considered in the presence of not only
the electron-vibron and Coulomb interaction but the influence of the magnetic
field directed perpendicular to the current flow was taken into account. The case
of fully spin-polarized leads allows to emphasize the effect emerged due to the
interplay between the above-mentioned phenomena. The magnetic field, which
induces the spin-flip processes on the quantum dot, leads to the lifting of spin
blockade in the spintronic device. The term in the Hamiltonian emerged due to
the Zeeman effect (splitting) in the magnetic field 𝐻 reads as

𝐻𝐻 = −𝑔𝜇𝐵𝐻
2

(︁
𝑐†↑𝑐↓ + 𝑐†↓𝑐↑

)︁
, (1.24)

where 𝑔 and 𝜇𝐵 stand for the gyromagnetic ratio and the Bohr magneton, re
spectively. This non-diagonal term in the Hamiltonian can be vanished out by
the performing the canonical transformation of the dot fermionic operators [5,
43, 52–55] which results in the re-normalization of the dot energy level (splitting)
𝜀1,2 = 𝜀𝑑 ± 𝑔𝜇𝐵𝐻/2, and tunneling amplitude,

𝐻𝑡 → 𝐻𝑡 =
𝑡0√
2
e−𝚤𝜆𝑝

∑︁
𝑘𝜅

𝑎†𝑘𝜅 (𝑗𝜅𝑑1 + 𝑑2) + H.c., (1.25)

where 𝑗𝐿,𝑅 = ±1 and 𝑑1,2 is the new dot operator. The reduced density ma
trix technique and the perturbation theory over the QD level width was used in
Ref. [43], see also Ref. [7], in order to calculate the transport properties of the
system. It has been obtained that the current-voltage dependencies have doubled
number of Franck-Condon steps compared to a conventional molecular transistor.
Every voltage interval 𝑒𝑉 = 2ℏ𝜔 has two steps. The doubling is explained by
the fact that the system with the Zeeman splitting has doubled number of elas
tic channels, with the inelastic channels associated with each of them [43]. The
doubling of the steps can also be observed in the presence of the Coulomb inter
action. Moreover, it is found that the lifting of the Coulomb blockade by the bias
voltage proceeds in stages, so that there are two elastic channels for tunneling of
the second electron to the quantum dot, and one of these channels opens earlier
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than the other in energy. The steps are separated by the voltage interval equal
to energy splitting in the external magnetic field [43]. In addition, it is obtained
that for strong electron-vibron interaction, 𝜆 ≳ 1, the temperature dependence
of the linear conductance is non-monotonic and anomalous growth of a conduc
tance maximum depends on the Coulomb interaction strength as well as on the
external magnetic field [43]. Also, thermoelectric properties of the device under
consideration in Ref. [43] and with the temperature drop through the system are
studied in Ref. [56].

In addition, transport properties of the following spintronic device are inves
tigated in Ref. [52]. (Let us omit the electron-vibron interaction for a moment.)
Within the model under consideration, a unmovable QD is placed between mag
netic fully spin-polarized (for simplicity) leads (half-metals) witch are held at
different temperatures and chemical potentials (tuned by a bias voltage). In such
a setup the effect of spin blockade occurs: an electron with the spin ↑ cannot
tunnel to the lead with the spin polarization ↓ and vice versa. However, an ex
ternal magnetic filed applied perpendicular to the lead magnetization, induces
spin-flip processes of an electron in the quantum dot. An arbitrary direction of
the magnetic field was considered in Ref. [57], where the case of non-interact
ing as well as interacting electron was taken into account and the dependence of
the conductance was found using the Green function approach. The equation of
motion method was used in Ref. [52] to calculate the electric and heat currents
in case of non-interacting electrons explicitly. It was shown that in an optimal
regime the figure of merit (𝑍𝑇 ) of the proposed spintronic device is essentially
enhanced [52] in comparison with the analogous device with unpolarized elec
trons [58]. In particular, it was shown [52] that (in the simplest case) the electric
current (transmission coefficient) has the following dependence of the magnetic
field, see also Refs. [5],

𝐼 = 𝐼0
ℎ2/2

ℎ2 + Γ2

[︀
𝑓+𝐿 − 𝑓+𝑅

]︀
, (1.26)

where 𝐼0 = 𝑒Γ is the maximal current through the SET with an unmovable dot and
ℎ = 𝑔𝜇𝐵𝐻 and 2𝑓+𝐿,𝑅 = 𝑓𝐿,𝑅(𝜀1) + 𝑓𝐿,𝑅(𝜀2). Also, the influence of the Coulomb
interaction on thermoelectric properties was calculated using the density matrix
approximation. It has been obtained that in the Coulomb blockade regime the
figure of merit is not suppressed due to electron-electron interaction [52].
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Nevertheless, when coupling of vibron subsystem to the heat bath is weak
and vibrons are not in equilibrium during the time of electron tunneling through
the system, their density matrix can not be in the Gibbs form and it has to be
evaluated from the solution of kinetic equations. This problem can be solved
only numerically (see, e.g., Ref. [59]). There are only few papers [60–64], where
vibrons in electron transport through a SET were considered as non-equilibrated.
In Ref. [62] it was assumed that vibron subsystem is in a coherent state. In
the approach used in the cited paper, the density matrix of coherent state was
time-independent, that contradicts Liuville-von Neumann equation for density
matrix of non-interacting vibrons. Therefore the results of this approach are
questionable and the problem of electron transport through a vibrating quantum
dot with coherent vibrons has to be re-examined.

It is worth to mention about one case of non-interacting vibrons, particu
larly, when the vibron subsystem is in a Fock state with the vibron number 𝑛
or in a superposition of ones. In Ref. [65] it is reported about an experimental
generation of the multi-phonon Fock states in a bulk acoustic-wave resonator with
a sufficient fidelity (up to 𝑛 = 8). A Wigner tomography and state reconstruction
to highlight the quantum nature of the prepared states was also performed [65].
Thus, in the case when the density matrix of mechanical subsystem describes the
one being in a Fock state, the correlation function, Eq. (1.17), has the following
form [47, 61],

⟨𝑛|e∓𝚤𝜆𝑝(𝑡)e±𝚤𝜆𝑝(𝑡′)|𝑛⟩ = e−𝜆2[1−e𝚤𝜔(𝑡−𝑡′)]𝐿𝑛

[︀
2𝜆2 (1− cos {𝜔(𝑡− 𝑡′)})

]︀
=

=
𝑛∑︁

𝑚=0

∞∑︁
𝑘=0

𝐴𝑛
𝑚𝑘e

𝚤𝜔[𝑚−𝑘](𝑡−𝑡′), (1.27)

with

𝐴𝑛
𝑚𝑘 = e−𝜆2 (−1)𝑚+𝑘𝑛!

(𝑚!)2(𝑛−𝑚)!
(2𝜆)2𝑚𝐿2𝑚−𝑘

𝑘 (𝜆2), (1.28)

where 𝐿𝑗
𝑖 (𝑧) is a generalized (associated) Laguerre polynomial [49]. Note that

Eq. (1.17) can be obtained from Eq. (1.27) by the summation oven 𝑛 with corre
sponding coefficients [47, 66].

In contrast, in the next chapter 2 we will consider single-electron transistor
with vibrating quantum dot, where vibronic subsystem is described by time-de
pendent density matrix. Physically this approach corresponds to coherent oscil
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lations of quantum dot treated as harmonic quantum oscillator. Coherent states
of harmonic oscillators are well known in physics (see, e.g., Refs. [67, 68]). In
tunnel electron transport they appear, for instance, in weak superconductivity
(Josephson current through a vibrating quantum dot, see Ref. [69] and referen
cies therein). Last years coherent states of photons ("Schroedinger-cat" states)
coupled to qubits and qubits formed by the coherent photon states became a hot
topic of studies in quantum computing science, see, e.g., review Ref. [70].

1.2. Coherence effects in electron transport through a
nanoelectromechanical system.

Electro-mechanical phenomena on the nanometer scale attract significant
attention during the last two decades [71]. Recent advantages in nanotechnologies
acquire a promising platform for studying the fundamental phenomena generated
by the interplay between quasi-classical and pure quantum subsystems. A charge
qubit formed by a tiny superconducting island (Cooper-pair box (CPB)) whose
basis states are charge states (e.g. states which represent the presence or absence
of excess Cooper pairs on the island), is one of a large group of pure quantum
systems [72]. There are many types of solid-state systems which qubit based on,
such as quantum superconducting circuits (including biased Josephson junctions,
SQUIDs and CPBs), see, e.g., review Refs. [73, 74]; quantum dots [75, 76] and
atomic ones [77].

In general, a qubit is one of the physical realizations of a two-level sys
tem [78], including ultracold atoms, classical nanomechanical resonators and semi
conductor microcavities, where extremely controllable qubits can be realized on
the exciton-polariton condensates [79, 80]. One of the main features related to
a two-level system is the fact that it usually exhibits an avoided level crossing
(anticrossing) of its energy levels as an external parameter is varied [81]. A driven
two-level system is described by a standard Hamiltonian,

𝐻 = −∆

2
𝜎𝑥 −

𝜀(𝑡)

2
𝜎𝑧, (1.29)

where 𝜀(𝑡) is a bias energy and ∆ stands for an energy gap [82]. By solv
ing the time-dependent Schrödinger equation for linearly driven system, 𝜀(𝑡) =

𝑣𝑡, one gets the following expression for the transition probability that is
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the probability to find the system in the excited state known as Landau-Zen
er-Stückelberg-Majorana (LZSM) formula,

𝑃𝐿𝑍𝑆𝑀 = e−2𝜋𝛿, (1.30)

with 𝛿 = ∆2/(2ℏ𝑣) being the adiabaticity parameter, see review Ref. [78]. The
non-linear driving is considered in Ref. [83]. Additionally, the LZSM transitions in
a periodically driven Cooper-pair box system was investigated [84]. At the same
time modern nanomechanical resonators which dynamics according to Ehrenfest
theorem to great extent is described by classical equations, are ideal representa
tives of quasiclassical subsystem [85]. Systems, which dynamics is determined
by the mutual influence between a superconducting qubit and a nanomechanical
resonator, are a subject of cutting-edge research in quantum physics, especially,
in quantum communication, see, e.g., Refs. [86–91]

There are two main questions that arise related to an interplay between
quasi-classical dynamics of the mechanical resonator and quantum dynamics of
the charge qubit. The first one is: how quasi-classical motion may affect pure
quantum phenomena? Considering this question, it was shown that the super
conducting current between two remote superconductors can be established by
mechanical transportation of Cooper pairs performed by an oscillating CPB [92].
Even more, it was demonstrated that such transportation could generate cor
relations between the phases of space-separated superconductors [93]. Another
question is how coherent Josephson dynamics of a charge qubit will affect the
dynamics of the quasi-classical resonator, in particular, whether or not the quan
tum entanglement between a superconducting qubit and mechanical vibrations
can be achieved? Recently it was demonstrated that individual phonons can be
controlled and detected by a superconducting qubit enabling coherent generation
and registration of quantum superposition of zero and one-phonon Fock states [86,
87]. At the same time nanomechanical resonators provide the possibility to store
quantum information in the complex multi-phonon coherent states. Such states,
in contrast to single-phonon states, where mechanical losses irreversibly delete the
quantum information, allow their detection and correction [70, 94].

A huge challenge in the realisation of full-scale quantum computer systems is
controlling qubits in an error-free way. Quantum error correction (QEC) protocols
offer a solution to this problem, in principle allowing for arbitrary suppression of
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the logical error rate provided certain threshold conditions on the physical qubits
are met [95]. For now several quantum error correction methods are proposed.
QEC codes [96] based on cat states are widely used [70]. Because of phases are
more robust against photon loss errors, information is typically encoded in the
phase of a coherent state. In analogy to classical phase-shift keying, quantum
information can also be encoded to the phase of a coherent state. The simplest
code (two-component cat code) is thus to use two coherent states with opposite
phases that is, the cat states [97]. Another QEC protocols are GKP codes. They
are quantum error-correcting codes that protect a state of a finite-dimensional
quantum system (qudit) that is encoded in an infinite-dimensional system (har
monic oscillator) [98]. For a typical two-level logical qubit, the GKP code is
defined as coherent superposition of infinitely squeezed states or the eigenstates
of the position operator �̂� with a spacing of 2/

√
𝜋 [97]. Besides, recently binomial

codes for QEC were proposed [99, 100]. These “binomial quantum codes” are
formed from a finite superposition of Fock states weighted with binomial coeffi
cients. It was shown that the binomial codes are protected to given order in the
time step against continuous dissipative evolution under loss, gain, and dephasing
errors [99].

Motivated by such a challenge, in the chapter 3 we will discuss the possibility
to generate quantum entanglement between the charge qubit states and mechan
ical coherent ones in a particular nanoelectromechanical system (NEMS) where
mechanical vibrations are highly affected due to the weak coupling with movable
a Cooper-pair box. Moreover, a protocol of bias voltage manipulation which re
sults in the formation of entangled states incorporating so-called cat-states (the
quantum superposition of the coherent states) which are robust in manipulation,
is proposed.

1.3. Mechanical instability in nanoelectromechanical devices.

In contrast to the previous sections 1.1, 1.2, where we have considered the
influence of electron-vibron interaction on transport properties of single-molecule
transistors within the approach when this coupling is associated with mechani
cal modes unrelated to the direction of the electron flow, in this section we pay
attention to the case when the position of a QD between the toward the leads
exponentially modifies the tunneling probability [11]. This can result in the fact
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that an equilibrium position of the QD is no more stable, that is, mechanical insta
bility and electron shuttling regime [101] can take place. This is usually the case
of weak electromechanical coupling, the influence of polaronic effect on electron
shuttling phenomenon was studied in Ref. [102, 103]. There are several compre
hend reviews on the topic, see Refs. [103–107]. Thus, we will briefly introduce
effects of mechanical instability in such a system and review some recent results.

The simplest model that can catch the electric shuttle and mechanical insta
bility effects, is described by the Hamiltonian Eq. (1.9), where now the tunneling
amplitude is position-dependent and the term Eq. (1.13) can be presented as
𝐻𝑖𝑛𝑡 = (𝜀𝑑 − 𝑒ℰ𝑥)𝑐†𝑐, where ℰ is an electric field due to presence an electron on
the quantum dot,

𝐻𝑡 =
∑︁
𝑘𝜅

𝑡𝜅(�̂�)𝑎
†
𝑘𝜅𝑐+ H.c., (1.31)

with 𝑡𝜅 = 𝑡0e±�̂�/𝜆, where 𝜆 is the tunneling length. In order to solve the problem,
the Liouville-von Neumann equation (or, the Lindblad equation, more generally)
is used as well as Green function approach in the perturbation theory over the pa
rameter of the electromechanical coupling. In this case if we neglect the effects of
zero-point fluctuations of a quantum dot, we can use the semi-classical treatment
within which ⟨�̂�⟩ = 𝑥 and we are interested in the big values of the dot oscillation
amplitude. Hence, the dot coordinate is governed by the Newton equation,

�̈�+ 𝜔2𝑥 = ℱ(𝑡)/𝑚, (1.32)

where the average force has a form:

ℱ(𝑡) = −Tr
[︂
𝜌
𝜕𝐻

𝜕𝑥

]︂
. (1.33)

It was shown analytically [108] that the mechanical (or shuttle) instability can
occur, that is, the amplitude of the QD oscillations which being small after an
initial fluctuation from an equilibrium position, start to grow exponentially with
the increment 𝑟𝑠 ∼ 𝜆Γ if the bias voltage is bigger than the threshold one, 𝑒𝑉 >

2(𝜀𝑑 + ℏ𝜔). In this case it can develop into a limit cycle in presence of small
but finite mechanical friction (term 𝛾�̇� in the l.h.s. of Eq. (1.32)) [44, 108]. In
addition, the fully quantum-mechanical approach (treatment of a QD coordinate
quantum-mechanically with the help of the Wigner function representation) can
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be used in order to investigate the mechanical instability. It was obtained that
the Wigner function in the regime of developed self-oscillations has a circle-like
form (not Gaussian shape), see Refs. [45, 109]. A sharp increase in current with
the transition to the stationary regime was also obtained. Hence, in the limit
cycle regime 𝐼 ∼ 𝑒𝜔 [109].

The internal friction caused by the temperature drop 𝑇 (not a bias voltage)
across the system in case of spinless electrons is considered in Ref. [110]. The
following temperature dependence of it was found,

𝛾(𝑇 ) ∼ 𝑇−1
[︀
cosh2 {𝜀𝑑/(2𝑇 )}

]︀−1
. (1.34)

The next step in generalization is to take into account the electron spin.
A spintronic nanoelectromechanical single-electron transistor with spin-polarized
leads is considered in Ref. [109]. The density matrix approximation and the high
bias voltage limit was used to find a steady-state solution. It was found that there
are two types of transitions between steady states when the electric or magnetic
field is varied [109]. In addition, the hysteresis behavior of a steady-state ampli
tude and electric current in the hard transition regime was obtained. The so-called
spin-mechanical coupling was considered in Refs. [111, 112]. The semi-classical
approach was used to derive the increment of the dot oscillation growth in the me
chanically unstable regime in the system under periodic magnetic field [111]. An
opposite regime of the mechanical ground-state cooling was proposed in Ref. [112].

Another type of electromechanical coupling in the magnetic shuttle struc
tures is based on the ferromagnetic exchange coupling between a QD and magnetic
leads. The region of the mechanical instability for such a nanoelectromechanical
device with the spin-polarized leads and for interacting electrons was obtained in
Ref. [113], see also Refs. [114–116]. It ha s been found that a shuttle regime of
the electron transport occurs at sufficiently low magnetic field strength (ℎ ≪ Γ)
in contrast to the electric one. This setup under the temperature drop across the
system was investigated in Refs. [117–120]. The region of the mechanical insta
bility was obtained analytically in the adiabatic limit within the semi-classical
approach. It is shown that the shuttle instability occurs in the region of external
magnetic fields between a lower, which depends only on the phenomenological
friction, and upper (which is temperature-dependent and saturates at the value
ℎ𝑐2/ℏ𝜔 =

√︀
7/2 at high temperatures) critical values [120]. The regime of the
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instability does not emerge at high values of the magnetic field strength because
in this case the spin-flip time exceeds the characteristic time scales determined by
mechanical (𝜔−1) and electronic (ℏ/Γ) time scales [120]. Moreover, temperature
dependence of the friction coefficient remains the same as for the case of spinless
electrons, Eq. (1.34). The effects of Coulomb interaction on the mechanical in
stability of the magnetic shuttle device are described in Refs. [118, 119]. It was
shown that such a spintro-mechanical shuttle instability can be triggered by the
electron-electron repulsion. The critical value of the strength of this interaction
crucially depends on the temperature and the strength of the magnetic field [119].
Also, the self-saturation effect was predicted for a magnetic shuttle device [113,
119]. This effect come out in the fact of the presence of the stationary regime
of mechanical self-oscillations even without the influence of an external friction
determined by the quality factor of a nanomechanical system bath as it is for
an electrical one. In addition, Coulomb correlation effects in a thermally driven
and voltage-biased magnetic devices were investigated numerically in Ref. [118].
It has been obtained that thermally induced magnetic shuttling of spin-polarized
electrons is a threshold phenomenon [118] as it is for electric shuttle device. Even
tually, in Ref. [117] electric and magnetic exchange forces was taken into account
at the same time. It leads to the several non-trivial effects which can be seen in
an experiments with electric current measurements as such a possibility has been
demonstrated in Ref. [117] by obtaining numerically I-V curves of the considered
spintro-mechanical transistor. The non-monotonic dependence of the differential
conductance in the stable (vibronic) regime was obtained, on the one hand. On
the other hand, the effect of negative differential conductance in the stationary
regime of mechanical self-oscillation was shown [117].

There are a number of the experiments where the regime of the mechanical
instability in nanoelectromechanical systems was observed, see, e.g., Refs. [121–
129]. A coherent spin shuttle processes in a GaAs/AlGaAs quantum dot array
was considered in Ref. [130].

The effect of self-sustained oscillations is itself an interesting problem from
a fundamental point of view, opening new possibilities for mass and force sens
ing [131, 132], while its underlying physical processes show potential applications
for mechanical cooling [133]. Self-sustained mechanical oscillations were first ob
served in a carbon nanotube (CNT)-based transistor [128], with further studies
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later verifying their transport signatures [134–136]. Recently, the experimental ob
servation of self-driven oscillations of a CNT-based quantum dot in the Coulomb
blockade regime has been reported [137].

Nevertheless, superconducting (SC) elements incorporated into nanoelec
tromechanical systems extend the horizon of this phenomenon, namely through
the effects of superconducting phase coherence; see, e.g., the following re
views [103, 138]. A SC electrode located near a quantum dot can affect its elec
tronic state via the tunneling exchange of Cooper pairs due to SC proximity effect.
In Ref. [92] (see also [93]) it was demonstrated that a movable Cooper-pair box
oscillating periodically between two remote superconducting electrodes can serve
as a mediator of Josephson coupling leading to coherent transfer of Cooper pairs
between the SC leads. The polaronic effects influence on the Josephson current
in a S-QD-S system was considered in Ref. [139]. Also, analogously to a system
in a normal state where the lifting of the Franck-Condon blockade is leads to
the non-monotonic temperature dependence of the differential conductance [38,
140], for the SC one is accompanied by non-monotonic temperature dependence
of the critical Josephson current [139, 141, 142]. The polaronic narrowing of the
Josephson critical current was considered in Refs. [69, 143, 144].

Furthermore, if the tunneling amplitude depends on the distance between
the QD and the SC leads, such exchange also provides a connection between the
electronic and mechanical degrees of freedom. Additional injection of electrons
from a biased normal metal electrode into the QD generates peculiar dynamics
of Cooper pairs on it. Interplay between electromechanical effects and phase
coherence gives new and unusual properties to a number of normal metal/super
conducting hybrid junctions [145–148]. In particular, it has recently been shown
that in a normal metal–suspended CNT–superconductor transistor, Andreev re
flection [149, 150] may give rise to a cooling of the mechanical subsystem [26, 151,
152] or generate a single-atom lasing effect [26] if certain conditions are fulfilled.
The resonant Andreev tunneling in a N-QD-S system was observed in Ref. [153].

The mechanical functionality of NEMS is to a large extent determined by
the physical principles underlying the interaction between the electronic and me
chanical subsystems. In all studies mentioned above, this interaction was due to
the localization of the charge [108, 145] or spin [113, 119] carried by electrons in
the movable part of the system. In the chapter 4, we will consider a fundamentally
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new type of electromechanical coupling based on the quantum delocalization of
Cooper pairs (see also Ref. [154]). We demonstrate that such coupling can promote
a self-saturated mechanical instability resulting in the generation of self-sustained
mechanical oscillations. The effect of the ground-state cooling of nanomechanical
vibrations in the considered system is also proposed. It is also shown that regime
of pumping or either cooling significantly affect the average current through the
system, making it possible to carry out direct experimental detection.
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CHAPTER 2

POLARONIC EFFECTS INDUCED BY NON-EQUILIBRIUM
VIBRONS IN A SINGLE-MOLECULE TRANSISTOR

In this chapter electron transport in a molecule transistor is considered in
the assumption that the mechanical subsystem is in a non-equilibrium, namely,
coherent state. The current-voltage characteristic of such a transistor based on a
vibrating quantum dot are calculated. Also, the obtained electric current depen
dencies on the oscillation amplitude of the QD are analyzed.

2.1. Model of a single-electron transistor.

The model device we are interesting in is depicted in Fig. 2.1. It consist of
two bulk electrodes, source (Left) and drain (Right) leads, with chemical potential
biased by voltage, 𝜇𝐿−𝜇𝑅 = 𝑒𝑉 , and a single-level quantum dot, which oscillates
in the direction 𝑥 perpendicular to the direction of electron current flow. The
gate voltage 𝑉𝐺 is adjusted to obtain maximal tunnel current, 𝜀0(𝑉𝐺) = 𝜀𝐹 ,
where 𝜀0(𝑉𝐺) is the dot level energy and 𝜀𝐹 is the Fermi energy of the leads. For
simplicity we consider tunneling of spinless electrons in a symmetric junction and
it is assumed that the vibration of QD does not change tunneling matrix elements
𝑡𝐿 = 𝑡𝑅 = 𝑡0. Here we consider the process of sequential electron tunneling, when
max(𝑒𝑉, 𝑇 ) ≫ Γ, where Γ ∝ |𝑡0|2 is the QD level width which is a characteristic
energy of dot-leads tunnel coupling. This model device can simulate, for instance,
a single-electron transistor based on a suspended single-wall carbon nanotube.

2.2. Hamiltonian of the system and equations for density matrix.

The Hamiltonian of the system, which is schematically illustrated in Fig. 2.1,
consists of four terms,

𝐻 = 𝐻𝑙 +𝐻𝑑𝑜𝑡 +𝐻𝑣−𝑑 +𝐻𝑡𝑢𝑛, (2.1)
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Fig. 2.1 Sketch of the single-electron transistor. A vibrating one-level (𝜀0 is the
level energy) quantum dot (macromolecule) is placed between two bulk electrodes
biased by the voltage 𝑉 . The dot tunnel couples (𝑡𝐿 = 𝑡𝑅 = 𝑡0 is the tunneling

amplitude) to the leads with the chemical potentials 𝜇𝐿,𝑅, 𝜇𝐿 − 𝜇𝑅 = 𝑒𝑉 and the
temperature 𝑇 . The gate voltage 𝑉𝐺 is set 𝜀0(𝑉𝐺) = 𝜀𝐹 , where 𝜀𝐹 is the Fermi
energy, to get maximal current. The dot oscillates in 𝑥 direction perpendicular
to the electric current flow. QD oscillations are modelled by the coherent state

of one-dimensional harmonic oscillator.

where 𝐻𝑙, 𝐻𝑑𝑜𝑡 are the Hamiltonians of the non-interacting electrons in the leads
and the dot, respectively,

𝐻𝑙 =
∑︁
𝑘,𝜅

𝜀𝑘,𝜅𝑎
†
𝑘,𝜅𝑎𝑘,𝜅, 𝐻𝑑𝑜𝑡 = 𝜀0𝑐

†𝑐, (2.2)

𝑎†𝑘,𝜅(𝑎𝑘,𝜅) is the creation (annihilation) operator of an electron in the lead 𝜅 = 𝐿,𝑅

with momentum 𝑘 and energy 𝜀𝑘,𝜅, 𝑐†(𝑐) is the creation (annihilation) operator
of electron state in the dot with the energy 𝜀0. These operators in the occupa
tion-number representation (second quantization) obey the standard anti-commu
tation relations {𝑎†𝑘,𝜅,𝑎𝑘′,𝜅′} = 𝛿𝑘𝑘′,𝜅𝜅′, where 𝛿𝑘,𝜅 is the Kronecker delta.

Hamiltonian 𝐻𝑣−𝑑 describes the vibronic (mechanical) subsystem and the
interaction between electrons and vibrons,

�̂�𝑣−𝑑 =
𝑝2

2𝑚
+
𝑚𝜔2𝑥2

2
+ ∆𝑥𝑐†𝑐. (2.3)

In Equation (2.3) 𝑥,𝑝 are the canonical conjugating operators of coordinate and
momentum, [𝑥,𝑝] = 𝚤ℏ. Here 𝜔,𝑚 are the frequency of dot oscillations and the
mass of the dot, ∆ is the electron-vibron coupling constant.
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Hamiltonian 𝐻𝑡𝑢𝑛 describes the tunnelling of electrons between the dot and
the leads and it takes the standard form,

𝐻𝑡𝑢𝑛 =
∑︁
𝑘,𝜅

𝑡𝜅𝑎
†
𝑘,𝜅𝑐+ H.c., (2.4)

where 𝑡𝜅 is the tunnelling amplitude. In what follows we restrict ourselves to
the symmetric case, 𝑡𝐿 = 𝑡𝑅 = 𝑡0, which does not affect the obtained results
qualitatively.

In order to diagonalize the Hamiltonian (2.1), it is convenient to perform
the unitary transformation, 𝑈𝐻𝑈 † → 𝐻, where 𝑈 = exp[𝑖𝜆𝑝𝑐†𝑐], so-called Lang
Firsov canonical transformation or polaronic transformation [47]. By equating
coefficients of bosonic operators of the same power, one can obtain the re-normal
ized constant of the electron-vibron interaction, 𝜆 = ∆/ℏ𝑚𝜔2. Then Eq. (2.3)
takes the diagonal form,

𝐻𝑣−𝑑 → 𝐻𝑣 =
𝑝2

2𝑚
+
𝑚𝜔2𝑥2

2
, (2.5)

while the tunnelling Hamiltonian 𝐻𝑡𝑢𝑛 is transformed to the following one,

𝐻𝑡𝑢𝑛 → 𝐻𝑡𝑢𝑛 = 𝑡0
∑︁
𝑘,𝜅

e−𝚤𝜆𝑝𝑎†𝑘,𝜅𝑐+ H.c.. (2.6)

The quantum consideration of electron-vibron interacting system is based
in what follows on the approximation that the density matrix of the system is
factorized [45] to direct product of the leads equilibrium density matrix, the vibron
density matrix and the density matrix of the dot,

𝜌 ≈ 𝜌𝑙 ⊗ 𝜌𝑣 ⊗ 𝜌𝑑𝑜𝑡. (2.7)

This approximation corresponds to the case of sequential electron tunneling,
which holds when max{𝑒𝑉,𝑇} ≫ Γ, where Γ is the electron level width, 𝑇 is the
temperature and 𝑉 is the bias voltage. Here we assume that vibrons are described
by a time-dependent coherent state |𝑧(𝑡)⟩. Note, that in Ref. [61] current-voltage
characteristics of a single-electron transistor were calculated for time-independent
coherent state of vibrons. This assumption contradicts the equation of motion of
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non-interacting vibrons in our model,

|𝑧(𝑡)⟩ = exp (−𝚤𝐻𝑣𝑡) |𝑧⟩, (2.8)

(ℏ = 1). Here |𝑧⟩ is the eigenfunction of vibron annihilation operator 𝑏, 𝑏|𝑧⟩ = 𝑧|𝑧⟩
(𝑧 is the complex number). The corresponding density matrix takes the standard
form,

𝜌𝑣(𝑡) = |𝑧(𝑡)⟩⟨𝑧(𝑡)|. (2.9)

Time evolution of the system is described by the Liouville-von Neumann equation
for the density matrix,

𝜕𝜌

𝜕𝑡
+ 𝚤[𝐻0 +𝐻𝑡𝑢𝑛,𝜌] = 0, (2.10)

where 𝐻0 = 𝐻𝑙 +𝐻𝑣 +𝐻𝑑𝑜𝑡. It has the following formal solution,

𝜌(𝑡) = 𝜌(−∞)− 𝚤

∫︁ 𝑡

−∞
𝑑𝑡′e−𝚤𝐻0(𝑡−𝑡′)[𝐻𝑡𝑢𝑛,𝜌(𝑡

′)]e𝚤𝐻0(𝑡−𝑡′). (2.11)

Then by substituting Eqs. (2.7), (2.11) into Eq. (2.10) and tracing out both the
electronic degrees of freedom of the leads and vibronic degrees of freedom of the
dot, one gets the following equation for the reduced density matrix of the QD,
𝜌𝑑𝑜𝑡 = Tr𝑙𝑒𝑎𝑑𝑠,𝑣𝜌,

𝜕𝜌𝑑𝑜𝑡
𝜕𝑡

+ 𝚤[𝐻𝑑𝑜𝑡,𝜌𝑑𝑜𝑡] = −Tr
∫︁ 𝑡

−∞
𝑑𝑡′[𝐻𝑡𝑢𝑛, e−𝚤𝐻0(𝑡−𝑡′)[𝐻𝑡𝑢𝑛,𝜌(𝑡

′)]e𝚤𝐻0(𝑡−𝑡′)]. (2.12)

Now we can explicitly calculate averages of electronic and vibronic operators in
the approximation of the factorized density matrix, Eq. (2.7). For equilibrium
density matrix of electrons in the leads we use the standard expression,

⟨𝑎†𝑘,𝜅𝑎𝑘′,𝜅′⟩ = 𝑓𝜅(𝜀𝑘,𝜅)𝛿𝑘,𝑘′𝛿𝜅,𝜅′, (2.13)

where 𝑓𝜅(𝜀) = (exp((𝜀− 𝜇𝜅)/𝑇 ) + 1)−1 is the Fermi-Dirac distribution function,
𝜇𝐿,𝑅 = 𝜇0 ± (𝑒𝑉/2) is the electrochemical potential in the lead 𝜅. Calculations
of the vibronic correlation function

𝐹 (𝑡,𝑡1;𝜆) = ⟨exp[−𝚤𝜆𝑝(𝑡)] exp[𝚤𝜆𝑝(𝑡1)]⟩, (2.14)
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in coherent state representation result in the equation,

𝐹 (𝑡,𝑡1;𝜆) = Tr[ e−𝚤𝜆𝑝(𝑡)|𝑧⟩⟨𝑧|e𝚤𝜆𝑝(𝑡1)] =
exp

{︁
−𝜆2

[︁
1− e𝚤𝜔(𝑡−𝑡1)

]︁
− 𝜆𝑧

[︀
e−𝚤𝜔𝑡 − e−𝚤𝜔𝑡1

]︀
+ 𝜆𝑧*

[︀
e𝚤𝜔𝑡 − e𝚤𝜔𝑡1

]︀}︁
.(2.15)

Here we introduce the dimensionless constant of the electron-vibron interaction
𝜆ℏ

√
2/𝑙0 → 𝜆, where 𝑙0 =

√︀
ℏ/𝑚𝜔 is the amplitude of zero-point oscillations.

The parameter 𝜆 can be rewritten in the form 𝜆 =
√
2𝑙/𝑙0, where 𝑙 = ∆/𝑚𝜔2

is the characteristic displacement length of classical oscillator. Note that in the
case of averaging with a nonequilibrium vibronic density matrix, the using of a
well-known formula, which still ⟨e𝐴⟩ = e

1
2 ⟨𝐴

2⟩ [155] leads to a wrong result.
With the help of Eqs. (2.13), (2.15), Eq. (2.12) for the reduced density

matrix of the QD can be represented as follows,

𝜕𝜌𝑑𝑜𝑡
𝜕𝑡

+ 𝚤[𝐻𝑑𝑜𝑡,𝜌𝑑𝑜𝑡] =
Γ

4𝜋

∑︁
𝜅

∫︁
𝑑𝜏

∫︁
𝑑𝜀×{︀

𝐹 (𝑡,𝑡− 𝜏 ;𝜆)e𝚤𝜀𝜏 [1− 𝑓𝜅(𝜀)] 𝑐e−𝚤𝐻𝑑𝑜𝑡𝜏𝜌𝑑𝑜𝑡(𝑡− 𝜏)𝑐†e𝚤𝐻𝑑𝑜𝑡𝜏+

+𝐹 (𝑡,𝑡− 𝜏 ;−𝜆)e−𝚤𝜀𝜏𝑓𝜅(𝜀)𝑐
†e−𝚤𝐻𝑑𝑜𝑡𝜏𝜌𝑑𝑜𝑡(𝑡− 𝜏)𝑐e𝚤𝐻𝑑𝑜𝑡𝜏 −

−𝐹 *(𝑡,𝑡− 𝜏 ;−𝜆)e𝚤𝜀𝜏𝑓𝜅(𝜀)𝑐e−𝚤𝐻𝑑𝑜𝑡𝜏𝑐†𝜌𝑑𝑜𝑡(𝑡− 𝜏)e𝚤𝐻𝑑𝑜𝑡𝜏 −
−𝐹 *(𝑡,𝑡− 𝜏 ;𝜆)e−𝚤𝜀𝜏 [1− 𝑓𝜅(𝜀)]𝑐

†e−𝚤𝐻𝑑𝑜𝑡𝜏𝑐𝜌𝑑𝑜𝑡(𝑡− 𝜏)e𝚤𝐻𝑑𝑜𝑡𝜏 + H.c.
}︀
,(2.16)

where Γ = 2𝜋𝜈𝑡20 is the level width of electron state in the dot, 𝜈 is the den
sity of states of the leads, which we assume to be energy independent (wide-band
approximation, see, e.g., Ref. [33]). In should be noted that unlike the case of equi
librated vibrons (see, e.g., Ref. [43]), the vibronic correlation function, Eq. (2.15),
depends on two times independently. This means that time-invariance in our sys
tem is explicitly broken. The vibrons in coherent state |𝑧(𝑡)⟩, (which physically
describes oscillations of a quantum pendulum) violates time-invariance.

The reduced density matrix (operator) 𝜌𝑑𝑜𝑡 acts in Fock space which in our
case is a two dimensional space of a spinless electron level in a dot. The matrix
elements of the density operator are: 𝜌0(𝑡) = ⟨0|𝜌𝑑𝑜𝑡(𝑡)|0⟩,𝜌1(𝑡) = 1 − 𝜌0(𝑡) =

⟨1|𝜌𝑑𝑜𝑡(𝑡)|1⟩, where |1⟩ = 𝑐†|0⟩, а |0⟩ is a vacuum (ground) state. From Eq. (2.16)
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it follows that the probability 𝜌0(𝑡) satisfies the integro-differential equation,

𝜕𝜌0
𝜕𝑡

=
Γ

4𝜋

∑︁
𝜅

∫︁
𝑑𝜏

∫︁
𝑑𝜀
{︁
𝐹 (𝑡,𝑡− 𝜏 ;𝜆)e𝚤(𝜀−𝜀0)𝜏 [1− 𝑓𝜅(𝜀))] [1− 𝜌0(𝑡− 𝜏)]−

−𝐹 *(𝑡,𝑡− 𝜏 ;−𝜆)e𝚤(𝜀−𝜀0)𝜏𝑓𝜅(𝜀))𝜌0(𝑡− 𝜏)
}︁
. (2.17)

This equation is strongly simplified after integration over 𝜀. This integration
can be done by using the Sokhotski–Plemelj theorem, see, e.g., [156],∫︁

𝑑𝜀e−𝚤𝜀𝜏𝑓𝜅(𝜀) = −𝚤𝜋𝛿(𝜏) + p.v.
𝚤𝜋𝑇 e−𝚤𝜇𝜅𝜏

sinh 𝜋𝑇𝜏
, (2.18)

where the symbol p.v. denotes the principal value of an integral (Cauchy principal
value). In the limit 𝑇 ≫ Γ one can neglect the retardation effects and Eq. (2.18)
takes a simple local form,

− 𝜕𝜌0
𝜕𝑡

=𝑀1(𝑡)𝜌0 −𝑀2(𝑡), (2.19)

where
𝑀𝑖(𝑡) = 1− 1

2

∑︁
𝑛

𝐴(𝑖)
𝑛 (𝑡)[𝑓𝐿(𝜀0 − 𝑛𝜔) + 𝑓𝑅(𝜀0 − 𝑛𝜔)]. (2.20)

The coefficients 𝐴(𝑖)
𝑛 (𝑡) are periodic functions of time (with the period 2𝜋/𝜔) and

they can be presented as the Fourier series,

𝐴(𝑖)
𝑛 (𝑡) =

∑︁
𝑝

𝑎(𝑖)𝑛,𝑝𝑒
𝚤𝜔𝑝𝑡, (2.21)

𝑎(1)𝑛,𝑝 =
1

𝜋

∫︁ 𝜋

−𝜋

𝑑𝜗e−𝜆2(1−cos𝜗) sin
(︁
𝑛𝜗− 𝜋𝑝

2

)︁
×

× sin
(︀
𝜆2 sin𝜗

)︀
cos

(︂
𝑝𝜗

2

)︂
𝐽𝑝

(︂
4𝜆|𝑧| sin 𝜗

2

)︂
, (2.22)

𝑎(2)𝑛,𝑝 =
1

2𝜋

∫︁ 𝜋

−𝜋

𝑑𝜗e−𝜆2(1−cos𝜗) cos

(︂
𝑝𝜗

2

)︂
×

× cos
(︁𝜋𝑝
2

− 𝑛𝜗+ 𝜆2 sin𝜗
)︁
𝐽𝑝

(︂
4𝜆|𝑧| sin 𝜗

2

)︂
. (2.23)

In Equations (2.22), (2.23) 𝐽𝑝(𝑥) is the Bessel function of the first kind and we
parameterized the coherent state eigenvalue 𝑧 in the form 𝑧 = |𝑧| exp(𝚤𝜙), where
the parameter |𝑧| determines the amplitude of the dot oscillations.
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In the asymptotic (𝑡 ≫ 1/Γ) steady state regime of oscillations the proba
bility 𝜌0(𝑡) is a periodic function of time, 𝜌0(𝑡+ 𝑇0) = 𝜌0(𝑡), and therefore it can
be presented as the Fourier series,

𝜌0(𝑡) =
∑︁
𝑛

𝜌𝑛𝑒
𝚤𝜔𝑛𝑡, 𝜌−𝑛 = 𝜌*𝑛. (2.24)

Then the equation for the Fourier harmonics takes the following form,

𝚤𝑝𝜌𝑝 = 𝛿𝑝,0 − 𝜌𝑝 −
1

2

∑︁
𝑛

[︃
𝑎(2)𝑛,𝑝 −

∑︁
𝑘

𝑎
(1)
𝑛,𝑝+𝑘𝜌𝑘

]︃
×

[𝑓𝐿(𝜀0 − 𝑛𝜔) + 𝑓𝑅(𝜀0 − 𝑛𝜔)] , (2.25)

and is a basic equation of this chapter. Its solutions are discussed in the subsec
tion 2.4.

2.3. Electric current.

We are interested in current-voltage (𝐼 − 𝑉 ) characteristics of the single
electron transistor. Therefore we need to calculate time-averaged current through
the system in the stationary regime,

𝐼 =
1

𝑇0

∫︁
𝑇0

𝐽(𝑡)𝑑𝑡, (2.26)

where 𝐽(𝑡) = (𝐽𝐿+𝐽𝑅)/2, with left (L) and right (R) electric currents are defined
as change of electrons in the corresponded lead,

𝐽𝜅 = 𝜂𝜅𝑒Tr
(︂
𝜌
𝜕𝑁𝜅

𝜕𝑡

)︂
, 𝑁𝜅 =

∑︁
𝑘

𝑎†𝑘,𝜅𝑎𝑘,𝜅, (2.27)

where 𝜂𝐿/𝑅 = ±1, а 𝑁𝜅 is the electron number operator in the lead 𝜅. With the
help of Eq. (2.11) the averaged current takes the form,

𝐽𝜅 = 𝜂𝜅Tr
∫︁ 𝑡

−∞
𝑑𝑡′e𝚤𝐻0(𝑡−𝑡′)𝐼𝜅e−𝚤𝐻0(𝑡−𝑡′)[𝐻𝑡𝑢𝑛, 𝜌] + c.c.,

𝐼𝜅 = 𝑒𝑡0e−𝚤𝜆𝑝
∑︁
𝑘

𝑐𝑎†𝑘,𝜅. (2.28)
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The straightforward calculation of Eq.(2.28) yields the following equation analo
gous to Eq.(2.19),

𝐽(𝑡)

𝐼0
= −𝜌0(𝑡)𝑃1(𝑡) + 𝑃2(𝑡), (2.29)

where 𝐼0 = 𝑒Γ/2 is the saturation current through a single-level symmetric junc
tion,

𝑃𝑖(𝑡) =
∑︁
𝑛

𝐴(𝑖)
𝑛 (𝑡) [𝑓𝐿(𝜀0 − 𝑛𝜔)− 𝑓𝑅(𝜀0 − 𝑛𝜔)] , (2.30)

and coefficients 𝐴
(𝑖)
𝑛 are determined by Eqs. (2.21)-(2.23). From Equa

tions (2.24),(2.26) and (2.29) one gets the following expression for the averaged
current,

𝐼 = 𝐼0
∑︁
𝑛,𝑘

[︁
𝑎
(2)
𝑛,𝑘𝛿𝑘,0 − 𝑎

(1)
𝑛,𝑘𝜌𝑘

]︁
[𝑓𝐿(𝜀0 − 𝑛𝜔)− 𝑓𝑅(𝜀0 − 𝑛𝜔)] . (2.31)

Note that the average current does not depend on the phase 𝜙 of the coherent
state.

2.4. Results of numerical calculations of I-V characteristics.

Equation (2.25) is the system of infinite number of equations for the Fourier
harmonics. However, in this case the series for the coefficients of the harmonics
converge quickly enough to allow one to consider only first several terms. Mean
while, the sufficient number of the terms depends on parameters of the system,
especially on the coherent state parameter |𝑧|. Results of numerical calculations
of Eq. (2.31) and (2.25) are presented in Figs. 2.2,2.3.

As one can see, the plots for coherent vibrons (black dotted curves) demon
strate step-like behavior of current versus bias voltage at low temperatures,
𝑇 ≪ ℏ𝜔. This behavior is similar (however, in general case not identical) to
Franck-Condon steps in 𝐼 − 𝑉 curves known for equilibrated vibrons (see e.g.
review paper Ref. [11] and references therein). The curves for equilibrated and
coherent vibrons coincide (see Fig. 2.2) when the amplitude of oscillations of QD
is less or of the order of the amplitude of zero-point oscillations 𝑙0, |𝑧| ≤ 1.

It is physically clear that in this case both systems are close to their ground
state (the average number of vibrons < 𝑛 >≪ 1) and there is no difference in
the behavior of coherent and non-coherent vibrons. The strong differences appear



50

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

eV�ÑΩ

I
�I

0

Fig. 2.2 The current-voltage dependencies for small value of coherent state
parameter of vibrons |𝑧| = 0.25 and for strong electron-vibron interaction 𝜆 = 1.
The black dotted curve corresponds to numerical calculation of current when the

vibrons are in the coherent state. The thin green curve represents 𝐼 − 𝑉

characteristics when the vibrons are in equilibrium and characterized by the
effective temperature 𝑇 * determined by Eq. (2.32). In calculations the values

𝑇/ℏ𝜔 = 0.05,Γ/ℏ𝜔 = 0.001 was used.

for large amplitudes of oscillations when |𝑧| ≫ 1 (see Fig. 2.3 where the dotted
curve corresponds to vibrons in the coherent state with parameter |𝑧| = 10). It
is useful to introduce effective temperature of vibrons 𝑇 * by equating the average
number of vibrons in coherent and equilibrium state,

|𝑧|2 = (exp(ℏ𝜔/𝑇 *))− 1)−1. (2.32)

Then for large amplitudes of oscillations (|𝑧| ≫ 1) and moderately strong elec
tron-vibron interaction (𝜆 ∼ 1) 𝑇 * ≃ |𝑧|2ℏ𝜔 ≫ 𝜆2ℏ𝜔. It is clear that at these
high temperatures of the leads the Franck-Condon steps in 𝐼 − 𝑉 characteristics
will be smeared out. It means that coherent vibrons for large amplitudes of QD
oscillations lead to strong suppression of current at low biases and to pronounced
step-like behavior of 𝐼 −𝑉 curves. It is interesting to compare this behavior with
the Franck-Condon theory by assuming that the vibronic subsystem is hot (it is
described by Bose-Einstein distribution with the temperature 𝑇 *), while the leads
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Fig. 2.3 𝐼 − 𝑉 plots for the large value of the parameter |𝑧| = 10. All other
parameters are the same as in Fig. 2.2. The thin green curve corresponds to the

case of equilibrated vibrons with the effective temperature determined by the
parameter |𝑧| = 10. The red dash-dotted curve represents calculation of current
in the approximation when 𝜌0 = 0.5 (see subsection 2.5). Inset shows the region

of low voltages.

are kept at low temperatures 𝑇 ≪ ℏ𝜔. The thin green curve in Fig. 2.3 demon
strates this case. We see rather strong differences in current-voltage dependencies:
(i) the height of the steps for coherent vibrons are not regular, and (ii) the current
in the case of coherent vibrons saturates at lower voltages (𝑒𝑉𝑠 ≃ |𝑧|ℏ𝜔) than for
equilibrated vibrons.

2.5. Estimation of the probability and current in steady-state regime

While computing of Eqs. (2.31) and (2.25), one can note that the coefficient
𝜌0 (zeroth harmonic) of the Fourier series (2.24) in the stationary regime is equal
to 𝜌0 = 0.5 with with very high accuracy, ∼ 10−5. It means that the probability
(matrix elements of the reduced density matrix) does not depend on time, 𝜌0 =
𝜌1 = 1/2. Then, by substituting 𝜌0 = 1/2 and 𝜌𝑝 = 0 for 𝑝 ≥ 1 in Eq. (2.31), we
obtain a simple analytic formula for the time-averaged electric current,

𝐼 = 𝐼0
∑︁
𝑛

𝑎𝑛 [𝑓𝐿(𝜀0 − 𝑛𝜔)− 𝑓𝑅(𝜀0 − 𝑛𝜔)] , (2.33)
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Fig. 2.4 𝐼 − 𝑉 plots for the large value of the parameter |𝑧| = 20 and 𝜆 = 0.5.
All other parameters are the same as in Fig. 2.2. The thin green curve

corresponds to the case of equilibrated vibrons with the effective temperature
determined by the parameter |𝑧| = 20. The red dash-dotted curve represents
calculation of current in the approximation when 𝜌0 = 0.5 (using Eqs. (2.31)

and (2.25)) and almost matches the solid orange curve obtained with the help of
Eq. (2.35).

where

𝑎𝑛 =
1

𝜋

∫︁ 𝜋

0

𝑑𝜗e−𝜆2(1−cos𝜗) ×

× cos𝑛𝜗 cos (𝜆2 sin𝜗)𝐽0

(︂
4𝜆|𝑧| sin 𝜗

2

)︂
. (2.34)

Furthermore, for the case 𝜆 ≤ 1 we can proceed with estimation of the integral
in Eq. (2.34),

𝑎𝑛 ≃ 𝐽2
𝑛 (2𝜆|𝑧|) . (2.35)

This allows us to strongly simplify numerical calculations. Figures 2.3 and 2.4
represent obtained current-voltage characteristics. The red dash-dotted curve cor
responds to calculations using Eqs. (2.33) та (2.34). This approximate analytical
calculations coincide with the numerical ones with a sufficiently high accuracy
(∼ 10−5).
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It needs to be noted that Eq. (2.33) has the same form as a well-known
equation (see, e.g., Ref.[11]) for the current of spinless electrons through a vibrat
ing QD with equilibrated vibrons (when the mechanical subsystem is described
by equilibrium density matrix 𝜌𝑒𝑞),

𝐼𝑒𝑞 = 𝐼0
∑︁
𝑛

𝐴𝑛 [𝑓𝐿(𝜀0 − 𝑛𝜔)− 𝑓𝑅(𝜀0 − 𝑛𝜔)] , (2.36)

where now spectral densities 𝐴𝑛 are defined by the expression
Tr [e−𝚤𝜆𝑝(𝑡)e𝚤𝜆𝑝(0)𝜌𝑒𝑞] =

∑︀
𝑛𝐴𝑛𝑒

𝚤𝜔𝑛𝑡, see subsection 1.1.2.

Conclusions

In this chapter the electron transport in a molecular transistor has been con
sidered, assuming vibrations of quantum dot oscillations to be in a coherent state.
It was shown that 𝐼−𝑉 curves at low temperatures have a step-like form which is
similar to the steps that accompany the lifting of the Franck-Condon blockade by
bias voltage. However, for large amplitudes of oscillations there are strong differ
ences in the predictions of the Franck-Condon theory and the model considered
in this chapter. By using numerical calculations we found strong suppression of
conductance even for a weak or moderately strong electron-vibron coupling. The
lifting of this coherent oscillations-induced blockade by a bias voltage occurs at
voltages much lower then the ones predicted by the Franck-Condon theory. In
addition, 𝐼−𝑉 characteristics of a single-electron transistor with coherent vibrons
do not depend on the phase of coherent state parameter.

The main statements of this chapter are based on the publications [1, 5, 6].
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CHAPTER 3

ENTANGLEMENT BETWEEN CHARGE QUBIT STATES AND
COHERENT STATES OF NANOMECHANICAL RESONATOR

GENERATED BY AC JOSEPHSON EFFECT

In this chapter a superconducting nanoelectromechanical system based on a
nanowire is considered. An experimentally simple protocol for bias voltage manip
ulation is discussed. This protocol results in the formation of the entanglement,
which can be controlled by parameters of the device, between the charge qubit
and the nanomechanical resonator. An experimentally feasible detection of the
effects by measuring average current is also considered.

3.1. Model and Hamiltonian of the nanoelectromechanical device.

A schematic representation of the nanoelectromechanical system (NEMS)
prototype, which is under the consideration, is presented in Fig. 3.1. It consists
of the superconducting nanowire (SCNW) [157, 158], which is suspended between
two bulk superconductors and is capacitively coupled to two side gate electrodes.
In what follows we consider the case when SCNW represents a superconduct
ing island that can be treated as a charge qubit (Cooper-pair box) whose basis
states are charge states — states which represent the presence or absence of ex
cess Cooper pairs on the island. Usually these states are refereed to as charge and
neutral states correspondingly. As this takes place, the gate voltage 𝑉𝐺 and the
voltage applied between the gates 𝑉ℰ are chosen in the way that the difference
in the electrostatic energies of the charged and neutral states equals to zero at
the straight configuration of the nanowire, while nanowire bending removes this
degeneracy. We also reduce the bending dynamics of the SCNW to the dynamics
of the fundamental flexural mode described by the harmonic oscillator.

Joint Cooper pairs dynamics and mechanical one of this system is described
by the Hamiltonian which can be presented in the form,

𝐻 = 𝐻𝑞 +𝐻𝑚 +𝐻𝑖𝑛𝑡. (3.1)

Here

𝐻𝑞,𝑖𝑛𝑡 =
[�̂�+𝑄𝐺(�̂�)]

2

2𝐶(�̂�)
−
∑︁
𝜎

[𝐸𝐽,𝜎 cos (𝜑𝜎 − 𝜑)], (3.2)
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Fig. 3.1 Schematic illustration of the NEMS under consideration. The
superconducting nanowire, treated as a charge qubit, is tunnel coupled to two

bulk superconductors (S) with the superconducting phase difference 𝜑 and
capacitively coupled to the two gate electrodes. The bending oscillations in the 𝑥

direction are described by the harmonic oscillator.

where �̂� = 2𝑒�̂� is discrete charge operator on the dot (�̂� is Cooper pair number
operator on the dot), 𝑄𝐺(�̂�) = 𝑉𝐺𝐶𝐺(�̂�) is continuous charge generated by the
gate voltage 𝑉𝐺, 𝐶(�̂�) = 2𝐶𝐽+𝐶𝐺(�̂�) is the mutual capacitance that includes gate
and Josephson junctions ones. The constant 𝐸𝐽 = 𝐸𝐽,𝐿 = 𝐸𝐽,𝑅 is the Josephson
coupling energy (we consider only the case of symmetric coupling), 𝜑 is the phase
operator on the dot that satisfies commutation relation [𝜑,�̂�] = 𝚤. Thus, Eq. (3.2)
can be rewritten as:

𝐻𝑞,𝑖𝑛𝑡 = 𝐸𝑐(�̂�)

(︂
�̂�+

𝐶𝐺(�̂�)𝑉𝐺
2𝑒

)︂2

− 2𝐸𝐽 cos𝜑 cos𝜑. (3.3)

Here 𝐸𝑐(�̂�) = (2𝑒)2/(2𝐶(�̂�)) is the charging energy. The coordinate-dependent
gate capacitance 𝐶𝐺(�̂�) is tuned in such a way that the difference of the elec
trostatic energies between the charge (with one exceed Cooper pair) and neutral
state is proportional to the CPB dimensionless displacement �̂� and is equal to
zero at an equilibrium point of oscillations. Then in Coulomb blockade regime
(𝐸𝐶(0) ≫ 𝐸𝐽) in a charge basis with determined number of Cooper pairs on the
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island the operator function exp[𝚤𝜑] is:

e𝚤𝜑|𝑛⟩ = 1√
2𝜋

∫︁ 2𝜋

0

𝑑𝜑e𝚤(𝑛+1)𝜑|𝜑⟩ = |𝑛+ 1⟩. (3.4)

Therefore, in the basis netted on the neutral |0⟩ = (0; 1)𝑇 and charged |1⟩ =

(1; 0)𝑇 state and in the particle number representation for mechanical variables
one gets:

𝐻𝑞 = −𝐸𝐽𝜎1 cos𝜑,

𝐻𝑚 =
ℏ𝜔
2

(︀
�̂�2 + 𝑝2

)︀
,

𝐻𝑖𝑛𝑡 = 𝜀�̂�𝜎3.

where 𝜎𝑖,𝑖 = 1,2,3, are the Pauli matrices, 𝐸𝑄 is actually the energy asso
ciated with the electrostatic field generated by gate voltage 𝑉𝐺. It implies that
only the first order of the gate capacitance matters and the case of toward the
degeneracy point in an equilibrium point is considered. Note that one can diag
onalize the non-perturbation part of the Hamiltonian, Eq. (3.5), by the unitary
transformation:

�̂� = (𝐼 + 𝚤𝜎2) /
√
2, (3.5)

which turns 𝜎1 → 𝜎3, 𝜎3 → −𝜎1. Then,

𝐻 = 𝜀�̂�𝜎1 + 𝐸𝐽 cos𝜑(𝑡)𝜎3 +
ℏ𝜔
2

(︀
�̂�2 + 𝑝2

)︀
. (3.6)

Here Hamiltonian 𝐻𝑞 represents Josephson coupling between the Cooper
Pair Box (CPB) and bulk superconductors with 𝜑 = 𝜑(𝑡) is the superconducting
phase difference between electrodes, 𝜎𝑖(𝑖 = 1,2,3) are the Pauli matrices acting
in the qubit Hilbert space in a basis where vectors (1,0)𝑇 and (0,1)𝑇 represent
charged and neutral states, respectively. Hamiltonian 𝐻𝑚 in Eq. (3.1) represents
dynamics of the fundamental bending mode described by the harmonic oscillator
with frequency 𝜔 (here momentum and coordinate operators, 𝑝 and �̂�, are normal
ized on the amplitude of zero-point oscillations 𝑥0 =

√︀
ℏ/𝑀𝜔, 𝑀 is an effective

mass of the island, [�̂�,𝑝] = 𝚤). The third term, 𝐻𝑖𝑛𝑡, describes the electromechan
ical coupling between the charge qubit and the mechanical oscillator induced by
the electrostatic force acting on the charged state of the qubit, 𝜀 = 𝑒ℰ𝑥0. In the
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last equality, ℰ is an effective electrostatic field that is controlled by the difference
of the applied voltages 𝑉𝐺 and 𝑉𝜀. Below we assume 𝜀≪ ℏ𝜔,𝐸𝐽 that corresponds
to a typical experimental situation [86, 91, 159].

The states of the system described by the Hamiltonian, Eq. (3.1), are a su
perposition of direct products of qubit states, e±𝑖 , and eigenstates of the oscillator
|𝑛⟩. Here and below e𝜈𝑖 denotes the eigenvectors of the Pauli matrices 𝜎𝑖 with
eigenvalues 𝜈 = ±1.

If 𝜀 = 0, the interaction between the qubit and the mechanical subsystem is
switched off and stationary states of the Hamiltonian, Eq. (3.1), are pure states.
The entropy of entanglement is an integral of motion, i.e. if the system is initially
in a pure state, it will be in a pure state at any moment of time. If we apply a
constant bias voltage between superconducting leads, an oscillatory (∝ sin𝜑(𝑡))
current emerges due to ac Josephson effect, �̇�(𝑡) = 2𝑒𝑉/ℏ, where 𝑉 is a bias
voltage. The synchronous switching on the electrical field ℰ and the bias voltage
between the superconducting leads results in the evolution of such pure states in
the states represented by entanglement between the qubit and oscillator states.

3.2. Time evolution of the system.

To carry out an analysis of time evolution of the system, we introduce the
dimensionless time and energies, 𝜔𝑡 → 𝑡, 𝐸𝐽/ℏ𝜔 → 𝐸𝐽 , 𝜀/ℏ𝜔 → 𝜀 and assume
that at the moment of switching on the interaction between the subsystems (𝑡 =
0), the difference between the superconducting phases is 𝜑 = 𝜑0 and the system
has been in a pure state,

|Ψ(0)⟩ = e𝑖𝑛 ⊗ |0⟩. (3.7)

At 𝑡 > 0, according to the (second) Josephson relation,

𝜑(𝑡) = 2𝑒𝑉 𝑡/ℏ𝜔 + 𝜑0. (3.8)

The Hamiltonian, Eq. (3.1), and, as a consequence, the time evolution opera
tor �̂�(𝑡,𝑡′), which is defining evolution of the arbitrarily initial state, have the
following properties,

�̂�(𝑡+ 𝑇𝑉 ) = �̂�(𝑡), �̂�(𝑡,𝑡′) = �̂�(𝑡+ 𝑇𝑉 ,𝑡
′ + 𝑇𝑉 ), (3.9)
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that is the are periodic in time with the period

𝑇𝑉 = 2𝜋/Ω𝑉 = 𝜋ℏ𝜔/𝑒|𝑉 |. (3.10)

To analyze the evolution operator, one can use the interaction picture (with re
spect to the interaction Hamiltonian 𝐻𝑖𝑛𝑡) taking,

�̂�(𝑡,𝑡′) = 𝒰𝜅(𝑡)𝒰𝜅(𝑡,𝑡
′)𝒰 †

𝜅(𝑡
′), (3.11)

where
𝒰𝜅(𝑡) = exp

[︂
𝚤𝐸𝐽

Ω𝑉
𝜎1 sin (Ω𝑉 𝑡+ 𝜅𝜑0)− 𝚤𝑎†𝑎𝑡

]︂
, (3.12)

is the unitary evolution operator corresponded to the non-perturbed Hamilto
nian and describes free evolution of mechanical and electronic subsystem indepen
dently. The parameter 𝜅 = sgn (𝑉/|𝑉 |) = ± characterizes the direction of the
bias voltage drop. The operator 𝒰𝜅(𝑡,𝑡

′) obeys the following equations,

𝚤
𝜕𝒰𝜅(𝑡,𝑡

′)

𝜕𝑡
= ℋ̂𝜅(𝑡)𝒰𝜅(𝑡,𝑡

′),

ℋ̂𝜅(𝑡) = 𝜀�̂�(𝑡)𝜎3(𝑡), 𝒰𝜅(𝑡,𝑡) = 𝐼. (3.13)

Here

�̂�(𝑡) =
1√
2
(�̂�e−𝚤𝑡 + �̂�†e𝚤𝑡),

𝜎3(𝑡) = 𝜎3 cos

(︂
𝐸𝐽

Ω𝑉
sin(Ω𝑉 𝑡+ 𝜅𝜑0)

)︂
−

−𝜎2 sin
(︂
𝐸𝐽

Ω𝑉
sin(Ω𝑉 𝑡+ 𝜅𝜑0)

)︂
. (3.14)

If the frequencies 𝜔 and Ω𝑉 are incommensurable, the operator ℋ̂𝜅(𝑡) is a
quasiperiodic function of time. In such a case one can expect that the mechanical
subsystem, being initially in the ground state, does not significantly deviate from
this state in the process of evolution. A rigorous consideration of this case is
done numerically [160]. Here let us consider the resonant case when Ω𝑉 = 𝜔 and
assume that 𝜀 ≪ 1. The first condition stipulates the following properties of the
evolution operator,
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𝒰𝜅(2𝜋𝑁, 2𝜋𝑁
′) =

(︁
𝒰𝜅(2𝜋,0)

)︁𝑁−𝑁 ′

, (3.15)

where 𝑁,𝑁 ′ are natural numbers. The second assumption allows us to make the
following substitution in a leading approximation regarding small 𝜀,

𝒰𝜅(𝑡,𝑡
′) = 𝒰𝜅(2𝜋𝑁,2𝜋𝑁

′), (3.16)

where 𝑁(𝑁 ′) = [𝑡(𝑡′)/2𝜋]([𝑥] is an integer part of 𝑥), and obtain an expression
for 𝒰𝜅(2𝜋,0) which can be written as,

𝒰𝜅(2𝜋,0) = exp
[︁
𝚤𝜀𝜎2𝑝(𝜅𝜑0) + 𝜀2𝒪(𝐼)

]︁
,

𝑝(𝜑) = 𝑝 cos𝜑+ �̂� sin𝜑. (3.17)

Here 𝜀 = 2𝜋𝜀𝐽1(2𝐸𝐽) and 𝐽1(𝑥) is the Bessel function of the first kind. Using the
above relations one can obtain an expression for the evolution operator �̂�(𝑡,𝑡′),
which in the main approximation regarding 𝜀 has a form,

�̂�(𝑡,𝑡′) = 𝒰𝜅(𝑡) exp [𝚤𝜀𝜎2𝑝(𝜅𝜑0)(𝑡− 𝑡′)]𝒰 †
𝜅(𝑡

′). (3.18)

Using Eqs. (3.7),(3.18), one gets that at the time 𝑡, with the accuracy to
small parameter 𝜀≪ 1, the state of the system |Ψ(𝑡)⟩ is given by an expression,

|Ψ(𝑡)⟩ =
∑︁
𝜈

𝐴𝜅
𝜈e

𝜈
2(𝑡,𝜅𝜑0)⊗ | − 𝜈z(𝑡,𝜅)/

√
2⟩. (3.19)

Here
e𝜈2(𝑡,𝜅𝜑0) = e𝜈2 exp [𝚤𝐸𝐽𝜎1 sin(𝑡+ 𝜅𝜑0)] ,

and e𝜈2 = 𝜎1e
−𝜈
2 are the eigenvectors of the Pauli matrix 𝜎2 with eigenvalues

𝜈 = ±1,

𝐴𝜅
𝜈 ≡ (e𝜈2(0,𝜅𝜑0),e𝑖𝑛) = cos (𝜅𝐸𝐽 sin𝜑0)𝑐

𝜈
2 − 𝚤 sin (𝜅𝐸𝐽 sin𝜑0)𝑐

−𝜈
2 , (3.20)

where an initial state can be presented in a basis of eigenvectors of the matrix 𝜎2
as:

e𝑖𝑛 =
∑︁
𝜈=±1

𝑐𝜈2e
𝜈
2. (3.21)
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The symbol |𝛼⟩ (where 𝛼 is a complex number) denotes the coherent states of the
harmonic oscillator, �̂�|𝛼⟩ = 𝛼|𝛼⟩, while a complex function z(𝑡,𝜅) is defined as:

z(𝑡,𝜅) = 𝜀𝑡 exp [−𝚤(𝑡+ 𝜅𝜑0)] . (3.22)

It should be stressed that Eq. (3.19) is valid only for restricted time interval
𝑡 ≤ 𝜀−2. Time 𝑡 should be also shorter than any dephasing and relaxation times.
From Eq. (3.19) one can see that initially pure state |Ψ(𝑡 = 0)⟩ = e𝑖𝑛 ⊗ |0⟩
evolves into the state represented by the entanglement between the two qubit
states and two coherent states of the mechanical resonator. Moreover, the details
of this entanglement depend on switching time (parameter 𝜑0) and direction of
the bias voltage (parameter 𝜅). These circumstances allow one to manipulate the
described above entanglement by changing the bias voltage direction.

3.3. Generation of "Schrödinger-cat states".

To demonstrate the effect of the entanglement between the charge
qubit and mechanical vibrations that comprehends the formation of so-called
Schrödinger-cat states of nanomechanical resonator, we consider the following
time protocol for 𝑉 (𝑡):

2𝑒𝑉 (𝑡) = −ℏ𝜔𝜃(𝑡) [1− 2𝜃(𝑡− 𝑡𝑠)] .

Namely, during the time interval 0 < 𝑡 < 𝑡𝑠 the bias voltage 𝑉 (𝑡) = −ℏ𝜔/2𝑒 and
then it switches its sign. Using Eqs. (3.11), (3.15), (3.17), one gets that at 𝑡 > 𝑡𝑠

the evolution operator has the form:

�̂�(𝑡,0) = 𝒰+(𝑡)e𝚤𝜎2𝜀(𝑡−𝑡𝑠)𝑝(𝜑0)𝑆e𝚤𝜎2𝜀𝑡𝑠𝑝(−𝜑0)𝒰−(0), (3.23)

where

𝑆 = 𝒰 †
+(𝑡𝑠)𝒰−(𝑡𝑠) ≡ 𝜌(𝑡𝑠,𝜑0) + 𝚤𝜏(𝑡𝑠,𝜑0)𝜎1, (3.24)

𝜌(𝑡𝑠,𝜑0) = cos (2𝐸𝐽 cos 𝑡𝑠 sin𝜑0) ,

𝜏(𝑡𝑠,𝜑0) = − sin (2𝐸𝐽 cos 𝑡𝑠 sin𝜑0) .
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Fig. 3.2 Schematic illustration of the positions of the coherent states described
by the complex numbers z1,2 and their combinations z± in the complex plane. It

denotes the time evolution of the coherent states, on the one hand, and the
dependence on the initial phase difference 𝜑0, on the other one.

As a result, the state of the system after changing the direction of the bias voltage
takes the following form:

|Ψ(𝑡)⟩ =
∑︁
𝜈

e𝜈2(𝑡,𝜑0)⊗

⊗
(︁
𝜌𝐴−

𝜈 | − 𝜈z+/
√
2⟩+ 𝚤𝜏𝐴−

−𝜈|𝜈z−/
√
2⟩
)︁
, (3.25)

where z± = z1 ± z2 and

z1 = e−𝚤(𝑡−𝜑0)𝜀𝑡𝑠,

z2 = e−𝚤(𝑡+𝜑0)𝜀(𝑡− 𝑡𝑠). (3.26)

A schematic representation of evolution of the coherent states can be seen in
Fig. 3.2. Equation (3.25) demonstrates that the state of the system is represented
by the entanglement of two qubit state with two so-called "cat states" (superpo
sition of coherent states) whose structure is controlled by the parameters 𝐸𝐽 (𝜌)

and 𝜑0. As it follows from Eqs. (3.25), (3.26), the bias voltage switching does
not affect the dynamics of the system if 𝜑0 = 𝜋𝑛 with 𝑛 standing for an integer
number.
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3.4. Entanglement entropy.

Let us limit ourselves for simplicity to considering a most interesting case
when 𝜑0 = 𝜋/2 and put e𝑖𝑛 = (e+2 +e−2 )/

√
2, that is, we suppose that immediately

before the interaction was switched on, the qubit was in the eigenstate of the
operator �̂�𝑞(𝑡 = 0− 𝛿). With these assumptions Eq. (3.20) transforms to:

𝐴−
+ = 𝐴−

− = exp(𝚤𝐸𝐽)/
√
2. (3.27)

To characterize the entanglement between the qubit states and the states of
the mechanical oscillator, we introduce the reduced density matrices, 𝜚𝑞(𝑚)(𝑡) =

Tr𝑚(𝑞)𝜚, where
𝜚 = |Ψ(𝑡)⟩⟨Ψ(𝑡)| (3.28)

is a complete density matrix of the system and Tr𝑚(𝑞) denotes the trace over
mechanical (qubit) degrees of freedom. Using Eqs. (3.19),(3.25), one can get the
following expression for the reduced qubit density matrix 𝜚𝑞,

𝜚𝑞(𝑡) =
𝐼 + 𝜆(𝑡,𝑡𝑠)𝜎1

2
, (3.29)

where

𝜆(𝑡,𝑡𝑠) = exp
(︀
−𝜀2𝑡2

)︀
, 0 < 𝑡 ≤ 𝑡𝑠, (3.30)

𝜆(𝑡,𝑡𝑠) = 𝜌2 exp
[︀
−𝜀2(𝑡− 2𝑡𝑠)

2
]︀
+ 𝜏 2 exp

(︀
−𝜀2𝑡2

)︀
, 𝑡 > 𝑡𝑠. (3.31)

Note that 𝜆(𝑡,𝑡𝑠) ≥ 0. When deriving Eq. (3.29), we took into account relation
e+2 (e

−
2 )

† + e−2 (e
+
2 )

† = 𝜎1. The entropy of entanglement (also called the von Neu
mann entropy) is defined as:

𝑆𝑒𝑛(𝑡) ≡ −Tr 𝜚𝑞(𝑡) log 𝜚𝑞(𝑡) = −Tr 𝜚𝑚(𝑡) log 𝜚𝑚(𝑡). (3.32)

Since the basis of the coherent state is not orthonormal (quasiorthogonal, in fact)
and overcomplite, it is suitable to use Eq. (3.29). In order to calculate the entan
glement entropy, it is convenient to present the matrix in a diagonal form. The
reason is if 𝜆𝑖, 𝑖 = 1,2 is an eigenvalue of the matrix 𝜚𝑞, then Eq. (3.32) can be
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rewritten as:
𝑆𝑒𝑛(𝑡) = −

∑︁
𝑖=1,2

𝜆𝑖 log 𝜆𝑖. (3.33)

One can easily find the eigenvalues of the reduced qubit density matrix 𝜚𝑞,
Eq. (3.29),

𝜆1,2 =
1

2
[1− 𝜆(𝑡,𝑡𝑠)] . (3.34)

From these equations one can see that the maximal value of the entanglement
is 𝑆(𝑚𝑎𝑥)

𝑒𝑛 = log 2 (when 𝜆1,2 = 1/2), meaning that correlations between the
electronic and mechanical subsystems are maximal. In the calculations such a
usual way of treating the uncertainty 0 log 0 = 0 is accepted. In general, entropy
of entanglement is a limited function, 0 ≤ 𝑆𝑒𝑛 ≤ log𝑁 , where 𝑁 stands for the
number of subsystems (degrees of freedom) which a whole system consists of.

A plot of 𝑆𝑒𝑛(𝑡) for 𝜀𝑡𝑠 = 1 and different values of 𝜌 (equally, for 𝜏 2 = 1−𝜌2)
is presented in Fig. 3.3. The entanglement entropy monotonically increases in time
within intervals 0 < 𝑡 < 𝑡𝑠 and 2𝑡𝑠 < 𝑡 < ∞ saturating to the maximal value
𝑆

(max)
𝑒𝑛 at 𝑡 → ∞. Within interval 𝑡𝑠 < 𝑡 ≤ 2𝑡𝑠 behavior of the entanglement

entropy depends on the relation between 𝜌 and 𝜏 . In particular, for 𝜌2 > 𝜏 2

the entanglement entropy 𝑆𝑒𝑛(𝑡) starts to decrease after switching, reaching some
minimal value (equals zero for the 𝜌2 = 1, i. e., our system is separable) within
interval 𝑡𝑠 < 𝑡 ≤ 2𝑡𝑠. If 𝜌2 < 𝜏 2, the entropy continues to grow just after
the switching. However, its derivative might be also negative within some time
interval whose existence is controlled by the parameters 𝜀𝑡𝑠 and 𝜏 2/𝜌2.

In addition let us also briefly consider a more general case of an arbitrary
value of initial superconducting phase difference 𝜑0. For the time interval 0 < 𝑡 ≤
𝑡𝑠, the qubit density matrix is given by Eqs. (3.29), (3.30). However, for the time
after the bias voltage switching, 𝑡 > 𝑡𝑠, one can find the following expression for
the density operator of the qubit,

𝜚𝑞(𝑡) =
1

2
𝐼 + 𝐼𝜌𝜏e−𝜀2𝑡2𝑠 sin

{︀
𝜀2𝑡𝑠(𝑡− 𝑡𝑠) sin (2𝜑0)

}︀
+

+
1

2
𝜎1e−𝜀2(𝑡2𝑠+(𝑡−𝑡𝑠)

2)
[︁
𝜌2e−2𝜀2𝑡𝑠(𝑡−𝑡𝑠) cos (2𝜑0) + 𝜏 2e2𝜀

2𝑡𝑠(𝑡−𝑡𝑠) cos (2𝜑0)
]︁
−

−𝜎1𝜌𝜏e−𝜀2(𝑡−𝑡𝑠)
2

sin
{︀
𝜀2𝑡𝑠(𝑡− 𝑡𝑠) sin (2𝜑0)

}︀
. (3.35)
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Fig. 3.3 The entanglement entropy dependent on time for different values of
𝜌 = 0,1/

√
2,0.9,1 (blue, yellow, orange and red curves). The thin dotted line

indicates the bias voltage switching time. The dashed curve corresponds to the
maximal value of the entanglement, log2.

From this equation one can find, in particular, following the above-mentioned
procedure, that the maximal effect is achieved at 𝜑0 = 𝜋/2 and one get Eq. (3.29).

3.5. Time evolution of the mechanical subsystem.

To describe the evolution of the mechanical subsystem, we consider the
reduced density matrix 𝜚𝑚(𝑡). From Eq. (3.25) one gets that at 𝑡 > 𝑡𝑠 the reduced
density matrix of the mechanical subsystem takes a form,

𝜚𝑚(𝑡) =
1

2

∑︁
𝜈

[︁
𝜌2|𝜈z+/

√
2⟩⟨𝜈z+/

√
2|+ 𝜏 2|𝜈z−/

√
2⟩⟨𝜈z−/

√
2|−

−𝚤𝜌𝜏
(︁
| − 𝜈z+/

√
2⟩⟨𝜈z−/

√
2| − H.c.

)︁]︁
. (3.36)

To visualize the state of the mechanical subsystem, it is convenient to use
the Wigner function representation for the density matrix 𝜚𝑚(𝑡),

𝑊 (𝑥,𝑝,𝑡) =
1

𝜋

∫︁
𝜚𝑚(𝑥+ 𝑦,𝑥− 𝑦,𝑡) exp(2𝚤𝑝𝑦)𝑑𝑦,



65

where 𝜚𝑚(𝑥,𝑥′,𝑡) = ⟨𝑥|𝜚𝑚(𝑡)|𝑥′⟩. Using Eq. (3.36), one gets

𝑊 (𝑥,𝑝,𝑡) = 𝑊𝑡(𝑥 cos 𝑡− 𝑝 sin 𝑡, 𝑝 cos 𝑡+ 𝑥 sin 𝑡), (3.37)

where the function 𝑊𝑡(𝑥,𝑝) is defined according to the relation,

𝑊𝑡(𝑥,𝑝) =
1

2

∑︁
𝜈

[︀
𝜌2𝑊0(𝑥,𝑝+ 𝜈|z+|) + 𝜏 2𝑊0(𝑥,𝑝− 𝜈|z−|)+

+2𝜌𝜏 sin (2𝜈𝑍−𝑥)𝑊0 (𝑥,𝑝+ 𝜈𝑍+)] . (3.38)

In Eq. (3.38) 𝑍± = (|z−| ± |z+|) /2 and

𝑊0(𝑥,𝑝) =
1

𝜋
exp

[︀
−(𝑥2 + 𝑝2)

]︀
(3.39)

is the Wigner function corresponding to the ground state of a harmonic oscillator.
Plots of 𝑊 (𝑥,𝑝,𝑡) for 𝑡 = 2𝜋𝑁 , 𝜌 = 0, 𝜌 = 1 and 𝜌 = 𝜏 = 1/

√
2 at |z+| = 3 and

|z−| = 9 are presented in Figs. 3.5 and 3.5.
From Equations (3.36),(3.38) one can see that in the case when 𝜌 is equal to

zero or one (in particular, when 𝑡𝑠 = 0) the Wigner function is positive and has
two maxima, demonstrating the entanglement between two states of the qubit and
two coherent states (see Fig. 3.5). In general case 𝜌𝜏 ̸= 0, and the Wigner function
takes both positive and negative values at 𝑡 > 𝑡𝑠, demonstrating the entanglement
of two states of the qubit with the superposition of two quasi-orthogonal coherent
states of the nanomechanical resonator (see Fig. 3.5).

3.6. Time-averaged electric current.

As it follows from the above consideration, the amplitude of mechanical fluc
tuations, and therefore the energy stored in the mechanical subsystem, changes
over time. This energy comes from the electronic subsystem causing a rectifica
tion of ac current. To analyze this phenomenon, we calculate the dimensionless
(normalized to 𝐼0 = 2𝑒/ℏ) ac Josephson current averaged over the N-th period of
the Josephson oscillations,

𝐼𝑁 =
1

2𝜋

2𝜋𝑁∫︁
2𝜋(𝑁−1)

𝑑𝑡Tr

(︃
𝜕�̂�𝑞(𝑡)

𝜕𝜑
𝜚(𝑡)

)︃
.
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Fig. 3.4 The Wigner functions 𝑊 (𝑥,𝑝,𝑡 = 2𝜋𝑁) for 𝜌 = 1 (a) and 𝜌 = 0 (b). It
takes only positive values and has two maxima demonstrating the entanglement

between two qubit states and two coherent states of the nanomechanical
resonator.

Taking into account that 𝜕�̂�𝑞/𝜕Φ = 𝜂𝜕�̂�/𝜕𝑡 and �̂�𝑞(𝑡 = 2𝜋𝑁) = 0, one gets
the following expression for 𝐼𝑁 ,

𝐼𝑁 =
𝜅

2𝜋
∇𝑁Tr

(︁
�̂�𝑚 + �̂�𝑖𝑛𝑡

)︁
𝜚(2𝜋𝑁)

=
𝜅

2𝜋
∇𝑁 [𝐸𝑚(𝑁) + 𝐸𝑖𝑛𝑡(𝑁)] , (3.40)

where ∇𝑁𝑓(𝑁) ≡ 𝑓(𝑁) − 𝑓(𝑁 − 1) is the first difference. From this equation,
one can see that the average current is given by the change of the mechanical
energy 𝐸𝑚 and the energy of interaction 𝐸𝑖𝑛𝑡 after N-th period. One can find
that at 𝑁 > 𝑁𝑠 = [𝑡𝑠/2𝜋] + 1 the functions 𝐸𝑚(𝑁) and 𝐸𝑖𝑛𝑡(𝑁) can be written
as follows,

𝐸𝑚(𝑁) = 2𝜋2𝜀2
(︀
𝜌2(2𝑁𝑠 −𝑁)2 + 𝜏 2𝑁 2

)︀
,

𝐸𝑖𝑛𝑡(𝑁) = 2𝜋𝜀𝜀
[︁
𝜌2 (𝑁 − 2𝑁𝑠) e−(2𝜋𝜀)2(𝑁−2𝑁𝑠)

2

+ 𝜏 2𝑁e−(2𝜋𝜀𝑁)2
]︁
. (3.41)

The change in the interaction energy contributes to the averaged current as
well as the mechanical energy. However, this contribution is of the order of 𝜀2

and important only for periods for which 𝐼(𝑁)/𝜀 ≃ 𝜀2. Thus, the average current
is determined by the change of mechanical energy mainly, and is defined by the
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Fig. 3.5 Wigner function 𝑊 (𝑥,𝑝,𝑡 = 2𝜋𝑁) for 𝜌 = 1/
√
2. It takes both positive

and negative values demonstrating entanglement between the qubit states and
"cat states" of the nanomechanical resonator.

following equations,

𝐼(𝑁)

𝜀
≈ 𝐼𝑚(𝑁) = −2𝜋𝜀𝑁, 𝑁 ≤ 𝑁𝑠 − 1 (3.42)

𝐼(𝑁)

𝜀
≈ 2𝜋𝜀

(︀
𝑁 − 2𝜌2𝑁𝑠

)︀
, 𝑁 > 𝑁𝑠. (3.43)

From Fig. 3.6 one can see that the averaged current exhibits a jump equal to
−𝜌2𝐼(𝑁𝑠) after the period during which the bias voltage is switched. It originates
in the fact that when we switch the sign of the bias voltage (at 𝑡 = 𝑡𝑠) the power,
pumped into the mechanical subsystem, changes depending on the magnitude of
𝜌2. For 𝜌 = 1, the supplied power, 𝑃 = 𝐼𝑉 , just changes its sign with the bias
voltage, and the current continues to flow in the same direction as it did before
switching. For 𝜌 = 0 supplied power is not changed and consequently the current
direction changes after switching.

Conclusions

In this chapter the quantum dynamics of the NEMS comprising the movable
CPB qubit, subjected to an electrostatic field and coupled to two bulk supercon
ductors, controlled by the bias voltage, via tunneling processes, is analyzed. It is
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Fig. 3.6 Schematic illustration of the time-averaged Josephson current as a
function of time for different values of 𝜌 (black dashed curve). The dotted lines
indicate the limiting cases of 𝜌 = 0 (top, blue online) and 𝜌 = 1 (bottom, red

online) The current for 𝑡 < 𝑡𝑠 does not depend on 𝜌 (𝜌 = 1), see
Eqs. (3.42),(3.24). The period 𝑁𝑠 corresponding to the moment of the bias

voltage switching, is out of the consideration.

demonstrated analytically that if the ac Josephson frequency of superconductors,
controlled by the bias voltage, is in resonance with the mechanical frequency of the
CPB, the initial pure state (direct product of the CPB state and ground state of
the oscillator) evolves in time into the coherent states of the mechanical oscillator
entangled with the qubit states. Furthermore, we established the protocol of the
bias voltage manipulation which results in the formation of entangled states incor
porating so-called cat-states (the quantum superposition of the coherent states).
The organization of such states is confirmed by the analysis of the correspond
ing Wigner function taking negative values, while their specific features provide
the possibility for their experimental detection by measuring the average current.
The discussed phenomena may serve as a foundation for the encoding of quantum
information from charge qubits into a superposition of the coherent mechanical
states. It may constitute interest for the field of quantum communications due
to the robustness of such multiphonon states regarding external perturbation,
comparing to a single-phonon Fock state.

The main results of this chapter are published, Refs. [2, 8].
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CHAPTER 4

NANOMECHANICS DRIVEN BY SUPERCONDUCTING
PROXIMITY EFFECT

In this chapter a hybrid nanoelectromechanical weak link based on a nan
otube is considered. More precisely, a carbon nanotube is suspended above a
trench in a normal metal electrode and positioned in a gap between two supercon
ducting ones. It is shown that under a constant bias voltage, in such a system the
mechanical instability, resulting in self-sustained nanotube oscillations, occurs, on
the one hand. On the other hand, the system can also operate in cooling regime.
The phenomena emerge due to superconducting proximity effect (the hybrid (nor
mal-superconducting) structure of the device). In the first section (4.1) bending
vibrations of the nanotube are treated semi-classically and details of mechanical
instability leading to a self-saturation effect is discussed together with an scheme
for an possible experimental detection of the considered effects. In the second
section (4.2) quantum effects are taken fully into account. It is demonstrated
that quantum fluctuations of the nanotube lead to the cooling effect, which can
be observed in an experiment due to the electric current measurement discussed
in the last subsection.

4.1. Self-sustained nanomechanical oscillations.

In this section the occurrence of the mechanical instability in the hybrid
nanoelectromechanical system is discussed. A region and required conditions for
it are obtained. Also, a strong enhancement of the electric current through the
system in the stationary regime of self-sustained oscillations of the nanotube is
found. The latter leads to the possibility for the device to operate as a transistor
or a diode.

4.1.1. Model of nanoelectromechanical device. Hamiltonian and
dynamics.

A sketch of the NEMS investigated in this paper is presented in Fig. 4.1. A
single-walled CNT is suspended above a trench in a bulk normal metal electrode
biased by a constant voltage 𝑉𝑏. Two superconducting leads with the supercon
ducting phase difference 𝜑 are positioned near the middle of the nanotube in such
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Fig. 4.1 Schematic illustration of the nanoelectromechanical device under
consideration. A carbon nanotube (CNT) is suspended in a gap between two

edges of a normal electrode (𝑁) and tunnel-coupled to it. The electronic energy
levels of the CNT are tuned such that only one energy level with energy 𝜀𝑑,

which is well separated from the other levels, is considered. Bending of the CNT
in the 𝑥 direction between two superconducting leads (𝑆) affects the values of the
tunneling barriers between them. The bias voltage 𝑉𝑏 is applied to the normal

electrode.

a way that the bending of the nanotube moves it closer to one electrode and fur
ther away from the other. The distance between the quantized electronic levels
inside the nanotube is much greater than the other energy parameters, allowing
one to consider the nanotube as a single-level quantum dot (QD). The bending
dynamics of the CNT are reduced to the dynamics of the fundamental flexural
mode. We suppose that the amplitude of this mode, 𝑥, is larger than the am
plitude of zero-point oscillations. Thus, we consider it as a classical mechanical
oscillator with mass 𝑚 and frequency 𝜔.

The dynamics of the mechanical subsystem is described by Newton’s equa
tion,

�̈�+ 𝜔2𝑥 = − 1

𝑚
Tr
{︂
𝜌
𝜕𝐻(𝑥)

𝜕𝑥

}︂
, (4.1)

where
𝐻 = 𝐻𝑑 +𝐻𝑙 +𝐻𝑡 (4.2)
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is the Hamiltonian of the electronic subsystem. The first term 𝐻𝑑 represents the
single-level QD,

𝐻𝑑 =
∑︁
𝜎

𝜀𝑑𝑑
†
𝜎𝑑𝜎, (4.3)

where 𝑑†𝜎(𝑑𝜎) is the creation (annihilation) operator of an electron with spin pro
jection 𝜎 =↑ , ↓ on the dot. The Hamiltonian 𝐻𝑙 = 𝐻𝑛

𝑙 +𝐻
𝑠
𝑙 describes the normal

and superconducting leads, respectively, with

𝐻𝑛
𝑙 =

∑︁
𝑘𝜎

(𝜀𝑘 − 𝑒𝑉𝑏)𝑎
†
𝑘𝜎𝑎𝑘𝜎, (4.4)

𝐻𝑠
𝑙 =

∑︁
𝑘𝑗𝜎

(︁
𝜀𝑘𝑐

†
𝑘𝑗𝜎𝑐𝑘𝑗𝜎 −∆𝑠(e𝚤𝜑𝑗𝑐†𝑘𝑗↑𝑐

†
−𝑘𝑗↓ + H.c.)

)︁
. (4.5)

Here, 𝑎†𝑘𝜎(𝑎𝑘𝜎), and 𝑐†𝑘𝑗𝜎(𝑐𝑘𝜎) are the creation (annihilation) operators of an elec
tron with quantum number 𝑘 and spin projection 𝜎 in the normal and super
conducting 𝑗 = 1,2 leads, respectively, and ∆𝑠e𝚤𝜑𝑗 is the superconducting order
parameter (in the 𝑗 electrode). Note that the energies 𝜀𝑑,𝜀𝑘 are counted from the
Fermi energy of the superconductors. In what follows, we set 𝜑1 = −𝜑2 = 𝜑/2.

The Hamiltonian𝐻𝑡 = 𝐻𝑛
𝑡 +𝐻

𝑠
𝑡 describes the tunneling of electrons between

the dot and the leads, where

𝐻𝑛
𝑡 =

∑︁
𝑘𝜎

𝑡𝑛0(𝑎
†
𝑘𝜎𝑑𝜎 + H.c.), (4.6)

𝐻𝑠
𝑡 =

∑︁
𝑘𝑗𝜎

𝑡𝑠𝑗(𝑥)(𝑐
†
𝑘𝑗𝜎𝑑𝜎 + H.c.). (4.7)

Here is the position-dependent superconducting tunneling amplitude

𝑡𝑠1(2)(𝑥) = 𝑡𝑠0e
(−1)𝑗(𝑥+𝑎)/2𝜆, (4.8)

where 2𝜆 is the characteristic tunneling length and 𝑎 is a parameter for asymmetry.
For a typical CNT-based nanomechanical resonator, 2𝜆 ∼ 0.5 nm [161]. We
concentrate our attention on the symmetric case 𝑎 = 0 and leave the asymmetric
one for a brief discussion in the subsection 4.1.5 because taking into account the
asymmetry does not bring any qualitative result, as we will show. Also, the
completely asymmetric case (only one SC electrode is present) is discussed in
Ref. [154].
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4.1.2. Density matrix approximation.

The time evolution of the electronic density matrix 𝜌 is described by the
Liouville–von Neumann equation (ℏ = 1),

𝚤𝜕𝑡𝜌 = [𝐻,𝜌], (4.9)

which together with Eq. (4.1) forms a closed system of equations that describe
the nanoelectromechanics of our system. We restrict ourselves to the case ∆𝑠 ≫
|𝑒𝑉𝑏| ≫ ∆𝑑 ∼ Γ𝑛, where ∆𝑑 = (2𝜋)𝜈𝑠|𝑡𝑠0|2 and Γ𝑛 = (2𝜋)𝜈𝑛|𝑡𝑛0 |2, with 𝜈𝑠(𝑛) the
density of states in the superconducting (normal) electrode.

To describe the electronic dynamics of the QD, we use the reduced density
matrix approximation in which the full density matrix of the system is factorized
to the tensor product of the equilibrium density matrices of the normal and su
perconducting leads and the density matrix of the dot as 𝜌 = 𝜌𝑛⊗ 𝜌𝑠⊗ 𝜌𝑑. Using
the standard procedure, one can trace out the degrees of freedom of the leads and
obtain the following equation for the reduced density matrix 𝜌𝑑 [145] (in the deep
subgap regime ∆𝑠 → ∞),

𝜕𝑡𝜌𝑑 = −𝚤
[︁
𝐻𝑒𝑓𝑓

𝑑 ,𝜌𝑑

]︁
+ ℒ𝑛{𝜌𝑑}, (4.10)

where
𝐻𝑒𝑓𝑓

𝑑 = 𝐻𝑑 +∆𝑑(𝑥,𝜑)𝑑↓𝑑↑ +∆*
𝑑(𝑥,𝜑)𝑑

†
↑𝑑

†
↓, (4.11)

∆𝑑(𝑥,𝜑) =
1

2
∆𝑑

∑︁
𝑗=1,2

e(−1)𝑗(𝑥/𝜆+𝚤𝜑/2) = ∆′(𝑥,𝜑) + 𝑖∆′′(𝑥,𝜑)

= ∆𝑑 cosh(𝑥/𝜆+ 𝑖𝜑/2). (4.12)

Above, ∆𝑑(𝑥,𝜑) is the off-diagonal order parameter induced by the super
conducting proximity effect [151, 162], and ∆′,′′(𝑥,𝜑) are real functions. The Lind
bladian term in Eq. (4.10) reflects the incoherent electron exchange between the
normal lead and QD. The latter in the high bias voltage regime, |𝑒𝑉𝑏| ≫ 𝜀0, 𝑘𝐵𝑇 ,



73

takes the form:

ℒ𝑛{𝜌𝑑} = Γ𝑛

∑︁
𝜎

⎧⎨⎩2𝑑†𝜎𝜌𝑑𝑑𝜎 −
{︀
𝑑𝜎𝑑

†
𝜎,𝜌𝑑

}︀
, 𝜅 = +1;

2𝑑𝜎𝜌𝑑𝑑
†
𝜎 −

{︀
𝑑†𝜎𝑑𝜎,𝜌𝑑

}︀
, 𝜅 = −1;

(4.13)

where 𝜅 = sgn(𝑒𝑉𝑏).
Another way to obtain the effective Hamiltonian Eq. (4.11) is to use the equa

tion of motion method within the Green function formalism, see, e.g., Ref. [163]
and the appendix in Ref. [151]. The idea of this well-established method is to
obtain a series of coupled differential equations for a desired Green function by
differentiating it several times.

Figure 4.2 represents the electronic dynamics on the dot for 𝜅 = ±1. From
Fig. 4.2, one can see that not all electron processes are allowed due to the param
eter scales in this work. In the subgap regime, single-electron transitions between
the dot and the superconducting leads are prohibited, and thus only an exchange
of Cooper pairs occurs. Moreover, because of the high bias voltage, single-elec
tron tunneling between the dot and the normal leads is enabled exclusively in
one direction (from the lead to the dot, see Fig. 4.2a, or vice-versa, Fig. 4.2b),
establishing that our model is electron-hole symmetric.

As a consequence, the QD density matrix 𝜌𝑑 acts in the Hilbert space ℋ4,
which may be presented as a direct sum of two ℋ2 spaces via ℋ4 = ℋ𝑒 ⊕ ℋ𝐶𝑃

spanned over state vectors | ↑⟩ = 𝑑†↑|0⟩, | ↓⟩ = 𝑑†↓|0⟩, and |0⟩, |2⟩ = 𝑑†↑𝑑
†
↓|0⟩ (with

𝑑↑,↓|0⟩ = 0). Then, the equations for the dot density matrix are the following:

𝜕𝑡𝜌0 = −4Γ𝑛𝜌0 − 𝚤∆𝑑(𝑥,𝜑)𝜌20 + 𝚤∆*
𝑑(𝑥,𝜑)𝜌02, (4.14)

𝜕𝑡𝜌2 = 2Γ𝑛(1− 𝜌0 − 𝜌2) + 𝚤∆𝑑(𝑥,𝜑)𝜌20 − 𝚤∆*
𝑑(𝑥,𝜑)𝜌02, (4.15)

𝜕𝑡𝜌02 = −2Γ𝑛𝜌02 + 𝚤∆𝑑(𝑥,𝜑)(𝜌0 − 𝜌2) + 2𝚤𝜀𝑑𝜌02, (4.16)

𝜕𝑡𝜌20 = −2Γ𝑛𝜌20 − 𝚤∆*
𝑑(𝑥,𝜑)(𝜌0 − 𝜌2)− 2𝚤𝜀𝑑𝜌20. (4.17)

Here we use the normalization condition 𝜌0 + 𝜌↑ + 𝜌↓ + 𝜌2 = 1. The equation for
the displacement 𝑥, Eq.(4.1), has the form,

�̈�+ 𝜔𝑥 = −2∆𝑑

𝜆

[︂
sinh

(︂
𝑥

𝜆
− 𝚤

𝜑

2

)︂
𝜌02 + sinh

(︂
𝑥

𝜆
+ 𝚤

𝜑

2

)︂
𝜌20

]︂
. (4.18)
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Fig. 4.2 Diagrams representing the transitions between electronic states in the
quantum dot. The single-electron states change due to transitions from the
empty to the single-occupied QD and then from the single-occupied to the
double-occupied one (indicated by orange arrows). In the high bias voltage

regime, the tunneling of electrons (a) or holes (b) with spin ↓ or ↑ is allowed
only from the normal lead to the dot and forbidden in the opposite direction.
Transitions between the empty and double-occupied quantum dot are due to

coupling with the superconducting leads (indicated by blue arrows).

The superselection rule, which forbids the superposition of states with inte
ger and half-integer spins, allows us to present the density matrix 𝜌𝑑 as a direct
sum of two density matrices 𝜌𝑑 = 𝜌𝑒⊕𝜌𝐶𝑃 acting in the ℋ2 Hilbert space spanned
over state vectors | ↑⟩,| ↓⟩ and |0⟩,|2⟩, respectively. Moreover, taking into account
spin-rotation symmetry, one can conclude that 𝜌𝑒 should be proportional to the
unit matrix, 𝜌𝑒 = 𝜌𝑒𝐼, while 𝜌𝐶𝑃 can be written in the form

𝜌𝐶𝑃 =
1

2
𝑅0𝐼 +

1

2

∑︁
𝑖

𝑅𝑖𝜎𝑖, (4.19)

where 𝜎𝑖,(𝑖 = 1,2,3) are the Pauli matrices. Here new variables are 𝑅𝑖 =

Sp(𝜎𝑖𝜌𝐶𝑃 ), with

𝜌𝐶𝑃 =

(︃
𝜌0 𝜌02

𝜌20 𝜌2

)︃
, (4.20)

(the equation for 𝑅0 =
1
2Sp𝐼𝜌 = (𝜌0 + 𝜌2)/2 is decoupled and is not relevant).
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Then by introducing the dimensionless time 𝜔𝑡 → 𝑡 and displacement
𝑥/𝜆 → 𝑥, and taking into account the normalization condition Tr𝜌𝑑 = 1, we
get the following closed system of equations for 𝑥(𝑡) and 𝑅𝑖(𝑡),

�̈�+ 𝑥 = −𝜉
[︂
sinh (𝑥) cos

(︂
𝜑

2

)︂
𝑅1 − cosh (𝑥) sin

(︂
𝜑

2

)︂
𝑅2

]︂
, (4.21)

𝛼
˙⃗
𝑅 = �̂��⃗�− 𝜅�⃗�3, (4.22)

where �⃗� = (𝑅1,𝑅2,𝑅3)
𝑇 , 𝑒3 = (0,0,1)𝑇 , 𝜉 = ∆𝑑/(𝑚𝜆

2𝜔2) is the nanoelectrome
chanical coupling parameter, and 𝛼 = 𝜔/(2Γ𝑛) is the adiabaticity parameter. For
a typical CNT-based NEMS, one can estimate 𝜉 ∼ 10−3 ≪ 1 [161, 164]. The
matrix �̂� is defined as follows,

�̂�(𝑥) =

⎛⎜⎝ −1 𝜀𝑑 −∆̃′′(𝑥,𝜑)

−𝜀𝑑 −1 −∆̃′(𝑥,𝜑)

∆̃′′(𝑥,𝜑) ∆̃′(𝑥,𝜑) −1

⎞⎟⎠ , (4.23)

where 𝜀𝑑 ≡ 𝜀𝑑/Γ𝑛, ∆̃𝑑 ≡ ∆𝑑/Γ𝑛.

4.1.3. Equation of motion method for Green functions.

In this subsection we present another method to obtain the effective Hamil
tonian Eq. (4.11) as it was pointed out in the previous subsection, 4.1.2. It is
based on the equation of motion method within the Green function formalism,
see, e.g., Ref. [163] and the appendix in Ref. [151]. The idea of this well-estab
lished method is to obtain a series of coupled differential equations for a desired
Green function by differentiating it several times.

Since in the considered system the dot coupled to superconducting and nor
mal leads independently, in the following derivation we can omit the contribution
of the normal lead. Let us define the retarded Green function in the 2x2 Nambu
space as [165],

�̂�𝑟(𝑡) = −𝚤𝜃(𝑡)

(︃
⟨{𝑑↑(𝑡),𝑑†↑(0)}⟩ ⟨{𝑑↑(𝑡), 𝑑↓(0)}⟩
⟨{𝑑†↓(𝑡), 𝑑

†
↑(0)}⟩ ⟨{𝑑†↓(𝑡), 𝑑↓(0)}⟩

)︃
. (4.24)
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Then, by differentiating this function two times, we find for the Fourier
harmonics

�̂�𝑟(𝜏) =

∫︁ +∞

−∞
�̂�𝑟(𝑡)e−𝚤𝜏 𝑡, �̂�𝑟(𝑡) =

1

2𝜋

∫︁ +∞

−∞
�̂�𝑟(𝜏)e𝚤𝜏 𝑡, (4.25)

the following closed system of equations:

𝑔−1
0 (𝜏)�̂�𝑟(𝜏) = 𝐼 + 𝜎𝑧

∑︁
𝑘𝑗

𝑡𝑠𝑘𝑗�̂�
𝑟,1
𝑗 (𝑘,𝜏), (4.26)

𝑔𝑠,−1
𝑘𝑗 (𝜏)�̂�𝑟,1

𝑗 (𝑘,𝜏) = 𝜎𝑧𝑡
𝑠
𝑘𝑗�̂�

𝑟(𝜏), (4.27)

where �̂�𝑟,1
𝑗 (𝜏) is Fourier harmonics of the following correlation function:

�̂�𝑟,1
𝑗 (𝑘,𝑡) = −𝚤𝜃(𝑡)

(︃
⟨{𝑐𝑘𝑗↑(𝑡),𝑑†↑(0)}⟩ ⟨{𝑐𝑘𝑗↑(𝑡),𝑑↓(0)}⟩
⟨{𝑐†𝑘𝑗↓(𝑡),𝑑

†
↑(0)}⟩ ⟨{𝑐†𝑘𝑗↓(𝑡), 𝑑↓(0)}⟩

)︃
. (4.28)

Here also the Green function of a single-level QD with the level energy 𝜀𝑑,

𝑔0(𝜏) =

(︃
1

𝜏−𝜀𝑑+𝚤0 0

0 1
𝜏+𝜀𝑑+𝚤0

)︃
, (4.29)

with its inverse matrix,

𝑔−1
0 (𝜏) =

(︃
𝜏 − 𝜀𝑑 + 𝚤0 0

0 𝜏 + 𝜀𝑑 + 𝚤0

)︃
, (4.30)

and the (standard) Green function of the 𝑗 superconductor:

𝑔𝑠𝑘𝑗(𝜏) =
𝚤

𝜏 2 − 𝐸2
𝑘

(︃
𝜏 + 𝜀𝑘 −∆𝑠e𝚤𝜑𝑗

−∆𝑠e−𝚤𝜑𝑗 𝜏 − 𝜀𝑘

)︃
, (4.31)

where the eigenvalues of the Hamiltonian 𝐻𝑠
𝑙 are 𝐸𝑘 = ±

√︀
𝜀2𝑘 +∆2

𝑠 (Andreev
level energies).

Then, by substituting Eq. (4.27) into Eq. (4.26), one gets the following
Dyson equation for the retarded Green function of the dot �̂�𝑟(𝜏) :

�̂�𝑟(𝜏) = 𝑔0(𝜏) + 𝑔0(𝜏)Σ̂
𝑟(𝜏)�̂�𝑟(𝜏), (4.32)
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where the self-energy function is determined as

Σ̂𝑟(𝜏) = 𝚤
∑︁
𝑘𝑗

(𝑡𝑠𝑘𝑗)
2𝑔𝑠𝑘𝑗(−∆𝑠,𝜏), (4.33)

and after the integrating over the energy variable, we obtain:

Σ̂𝑟(𝜏) =
1

2

∑︁
𝑗

∆𝑑(𝑥)√︀
∆2

𝑠 − 𝜏 2

(︃
𝜏 ∆𝑠e𝚤𝜑𝑗

∆𝑠e−𝚤𝜑𝑗 𝜏

)︃
. (4.34)

Moreover, in case of symmetric tunneling contacts with the superconducting leads,
one can re-write this equation as follows:

Σ̂𝑟(𝜏) =
∆𝑑√︀

∆2
𝑠 − 𝜏 2

(︃
𝜏 cosh (𝑥/𝜆) ∆𝑠 cosh (𝑥/𝜆− 𝚤𝜑/2)

∆𝑠 cosh (𝑥/𝜆+ 𝚤𝜑/2) 𝜏 cosh (𝑥/𝜆)

)︃
. (4.35)

Furthermore, from a formal solution of Eq. (4.32)

�̂�𝑟(𝜏) =
[︁
𝑔−1
0 + Σ̂𝑟

]︁−1

, (4.36)

one gets the following expression,

�̂�𝑟(𝜏) =
1

det(𝑔−1
0 − Σ̂𝑟)

(︃
𝑔−1
22 − Σ𝑟

22 𝑔−1
12 − (−Σ𝑟

12)

𝑔−1
21 − (−Σ𝑟

21) 𝑔−1
11 − Σ𝑟

11

)︃
, (4.37)

or, more specifically, see, e.g., Refs. [151, 166],

�̂�𝑟(𝜏) =
1

𝐷(𝜏)

(︃
𝑔−1
22 − Σ𝑟

22 Σ𝑟
12

Σ𝑟
21 𝑔−1

11 − Σ𝑟
11

)︃
, (4.38)

with
𝐷(𝜏) =

(︀
𝑔−1
11 − Σ𝑟

11

)︀ (︀
𝑔−1
22 − Σ𝑟

22

)︀
− Σ𝑟

12Σ
𝑟
21, (4.39)

by definition. In the deep subgap regime (∆𝑠 → ∞) straightforward calculations
leads to:

�̂�𝑟(𝜏) =
1

𝐷(𝜏)

(︃
𝜏 + 𝜀𝑑 ∆*

𝑑(𝑥,𝜑)

∆𝑑(𝑥,𝜑) 𝜏 − 𝜀𝑑,

)︃
(4.40)

𝐷(𝜏) = 𝜏 2 − 𝜀2𝑑 − |∆𝑑(𝑥,𝜑)|2. (4.41)
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One the other hand, let us consider an effective QD Hamiltonian of such a
type of Eq. (4.11),

𝐻 ′ =
∑︁
𝜎

𝜀𝑑𝑑
†
𝜎𝑑𝜎 + 𝛶𝑑↓𝑑↑ + 𝛶 †𝑑†↑𝑑

†
↓, (4.42)

where 𝛶 is supposed to be unknown for now function, or an operator-function in
more general situation, of the dot position 𝑥 and superconducting phase difference
𝜑. Then, one can find the retarded Green function, Eq. (4.24), of a dot described
by the Hamiltonian Eq. (4.42) using the method of equations of motion which
was employed above. By differentiating only one time, one gets the following
expression for the desired Green function Fourier component:

�̂�𝑟(𝜏) =
1

𝜏 2 − 𝜀2𝑑 − |𝛶 |2

(︃
𝜏 + 𝜀𝑑 𝛶 †

𝛶 𝜏 − 𝜀𝑑

)︃
. (4.43)

At this point one can compare Eq. (4.43) with Eq. (4.40) and as a matter of fact
justify that 𝛶 = ∆𝑑(𝑥,𝜑).

4.1.4. Dynamics of the system in adiabatic regime.

The system of Eqs. (4.21) and (4.22) has an obvious static solution 𝑥𝑠𝑡 = 0+

𝒪(𝜉), �⃗�𝑠𝑡 = 𝜅𝐿−1(0)�⃗�3+𝒪(𝜉)�⃗�(1), here ‖�⃗�(1)‖ = 1. The stability of this solution
can then be investigated in standard ways, see, for example, Ref. [120] and below.
However, to simplify this procedure, we will consider the adiabatic case when
𝛼 ≪ 1, which corresponds to a typical experimental situation [137] and reduces
the problem to one that allows the use of Poincare analysis. More specifically,
this inequality allows one to find a solution of Eq. (4.22) to the accuracy 𝛼,

�⃗�(𝑥,𝑡) = 𝜅𝐿−1(𝑥(𝑡))(1 + 𝛼�̇�𝜕𝑥𝐿
−1(𝑥(𝑡)) +𝒪(𝛼2))�⃗�3. (4.44)
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In the zeroth order of the perturbation theory over the adiabaticity param
eter 𝛼, from Eq. (4.44) one can find:

𝑅
(0)
1 (𝑥,𝑡) = 𝜅

∆̃′′(𝑥,𝜑) + 𝜀𝑑∆̃
′(𝑥,𝜑)

�̃�2(𝑥,𝜑)
, (4.45)

𝑅
(0)
2 (𝑥,𝑡) = 𝜅

∆̃′(𝑥,𝜑)− 𝜀𝑑∆̃
′′(𝑥,𝜑)

�̃�2(𝑥,𝜑)
, (4.46)

𝑅
(0)
3 (𝑥,𝑡) = −𝜅 1 + 𝜀2𝑑

�̃�2(𝑥,𝜑)
. (4.47)

Here �̃�2 ≡ 𝒟2(𝑥,𝜑)/Γ2
𝑛 = ∆̃2

𝑑

[︀
sinh2 𝑥+ cos2 (𝜑/2)

]︀
+ 𝜀2𝑑 + 1.

The equation for the first order correction to the re-normalized matrix ele
ments of the dot density operator, using Eq. (4.44), takes the form:

�⃗�(1)(𝑥,𝑡) = 𝛼�̇�𝐿−1(𝑥(𝑡))𝜕𝑥�⃗�
(0)(𝑥,𝑡). (4.48)

The coefficients 𝑅(1)
1 and 𝑅(1)

2 can be expressed in terms of 𝑅(1)
3 which has

the following form

𝑅
(1)
3 (𝑥,𝑡) = 𝛼𝜅�̇�

∆̃2
𝑑

�̃�6

[︁
sinh (2𝑥)

{︁(︀
1− 𝜀2𝑑

)︀
�̃�2 − 4

(︀
1 + 𝜀2𝑑

)︀}︁
+ 2𝜀𝑑�̃�2 sin𝜑

]︁
.

(4.49)
Then by substituting these solutions into Eq. (4.21), one gets (to accuracy

𝛼) the following nonlinear differential equation for 𝑥(𝑡):

�̈�− 𝜂(𝑥,𝜑)�̇�+ 𝑥 = 𝐹 (𝑥,𝜑), (4.50)

the solution of which may be analyzed via Poincare’s theory. Here, the nonlinear
force 𝐹 (𝑥,𝜑) and friction coefficient 𝜂(𝑥,𝜑), which in what follows we refer to as
a pumping coefficient, are generated by the interaction with the non-equilibrium
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electronic environment. In terms of 𝑅(1)
3 , the pumping coefficient takes a form:

�̇�𝜂(𝑥,𝜑) =
∆̃𝑑

1 + 𝜀2𝑑

[︁
− [sin𝜑− 𝜀𝑑 sinh (2𝑥)]𝑅

(1)
3 +

+
𝛼𝜅�̇�

�̃�4

{︁
2𝜀𝑑�̃�2 (cosh (2𝑥)− cos𝜑)+

+∆̃2
𝑑 sinh (2𝑥)

[︀(︀
1− 𝜀2𝑑

)︀
sin𝜑− 2𝜀𝑑 sinh (2𝑥)

]︀}︁]︁
. (4.51)

The straightforward calculations lead to:

𝐹 (𝑥,𝜑) = 𝜅𝜉
∆̃𝑑

2�̃�2
[sin𝜑− 𝜀𝑑 sinh (2𝑥)] , (4.52)

𝜂(𝑥,𝜑) = 𝜅𝛼𝜉
∆̃𝑑

2�̃�6

[︁
∆̃2

𝑑 sinh (2𝑥)
(︁
�̃�2 + 4

)︁
{sin𝜑− 𝜀𝑑 sinh (2𝑥)}+

+ 8𝜀𝑑�̃�2
{︀
sin2 (𝜑/2) + sinh2 𝑥

}︀]︁
. (4.53)

4.1.5. Stability of a static solution. Linearization.

The strongly nonlinear Eq. (4.50) in the adiabatic limit has static solutions
determined by the equation:

𝑥𝑠𝑡 = 𝐹 (𝑥𝑠𝑡,𝜑), (4.54)

which is in the considered limit of small electromechanical coupling, 𝜉 ≪ 1, has
a trivial solution,

𝑥𝑠𝑡 = 𝜅𝜉
∆̃𝑑

2�̃�2
sin𝜑 ∝ 𝒪(𝜉). (4.55)

It is obvious from Eq. (4.55) that 𝑥𝑠𝑡 is strictly equal to zero when 𝜑 = 𝜋𝑛 (𝑛
is an integer number). This corresponds to the straightforward configuration of
the nanotube. For the time evolution of a small deviations from the equilibrium
position 𝛿𝑥(𝑡) = 𝑥(𝑡) − 𝑥𝑠𝑡 one can obtain the following equation (linearized
Eq. (4.50) near the equilibrium point 𝑥𝑠𝑡),

𝛿�̈�− 𝜂(0,𝜑)𝛿�̇�+ 𝛿𝑥 = 0. (4.56)
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Here we ignore a small shift of the mechanical oscillation frequency due to the
re-normalization. And,

𝜂(0,𝜑) = +𝜅𝛼𝜉
4𝜀𝑑∆̃𝑑

�̃�4(0,𝜑)
sin2

(︂
𝜑

2

)︂
. (4.57)

Thereby, the static solution 𝑥𝑠𝑡 is unstable, that is, an initial small spontaneous
fluctuation leads to exponential increasing of the QD vibration amplitude, when
𝜂(0,𝜑) > 0 and it is stable otherwise. It is clearly seen from Eq. (4.57) that
the presence of the mechanical instability directly depends on the position of the
dot energy level 𝜀𝑑 and the direction of the applied bias voltage 𝜅. In case of
positive 𝜅𝜀𝑑 the equilibrium position 𝑥𝑠𝑡 is unstable with respect to the increase
of the oscillation amplitude for all values of the superconducting phase difference
𝜑 (except of 𝜑 = 0 which is so only for the symmetric junction as will be discussed
in the subsection 4.1.7). The later reveals the reason we have called 𝜂(𝑥,𝜑) as a
pumping coefficient. We can also easily note from Eq. (4.57) that the pumping
coefficient takes its maximum at 𝜑 = 𝜋 (the force 𝐹 (0,𝜋) = 0). One should
compare it to the case of 𝜑 = 0 when the force and pumping are equal to zero,
𝐹 (0,0) = 0 and 𝜂(0,0) = 0. It is rather an unexpected situation because usually
a friction/pumping is generated via the force acting on a QD. However, in our
case, the force responsible for the nanomechanical pumping is of electronic nature
and is sensitive to the fact that Cooper pairs are delocalized between nanotube
and superconducting leads. This force emerges when the Cooper pair is in a state
of quantum superposition controlled by phase difference, nanotube bending, and
other parameters.

The phase diagram of the mechanical instability occurred in the proposed
system is presented in Fig. 4.3. The maximal pumping takes place at 𝜀𝑑 = 1/

√
3

(and 𝜑 = 𝜋).

4.1.6. Self-saturation effect.

In order to analyse what the mechanical instability leads to, we find the
stationary solutions 𝑥𝑐(𝑡) of Eq. (4.50). It is natural to use the smallness of the
parameter 𝜉 and, then, Eq.(4.50) can be treated as the one describing an harmonic



82

η(0,ϕ)/αξ

-2

-1

0

1

2

Fig. 4.3 Dependence of the pumping coefficient 𝜂(0,𝜑) (in units of 𝛼𝜉) on the
position of the QD energy level 𝜀𝑑 and superconducting phase difference 𝜑 for

the positive direction of the bias voltage 𝜅 = 1 and ∆̃𝑑 = 1. The red color
scheme indicates the regime where the mechanical instability occurs and blue

one corresponds to the damping situation.

oscillator slightly perturbed by the interaction with the electronic subsystem,

�̈�+ 𝑥 = 𝜉𝑓(�̇�,𝑥). (4.58)

In such a case of small electromechanical coupling 𝜉 ≪ 1, one can use the
Krylov-Bogoliubov method of averaging [167] (see also [168]) to find an approx
imate solution of the Eq.(4.50). In the first order of the perturbation theory
this method matches the Van der Pol averaging method. Following it, let us as
sume that in a stationary regime, the dot displacement 𝑥𝑐 takes a form (with the
accepted accuracy 𝜉),

𝑥𝑐(𝑡) = 𝑥𝑠𝑡 +
√
𝐴 sin (𝑡+ 𝜙(𝑡)) +𝒪(𝜉), (4.59)

where the amplitude
√︀
𝐴(𝑡) and the phase 𝜙(𝑡) vary slowly in time,

𝑥𝑠𝑡,�̇�(𝑡),�̇�(𝑡) ∼ 𝜉. Then, by substituting the ansatz (4.59) into Eq.(4.50) and
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assuming the same functional form for the derivative �̇�𝑐,

�̇�𝑐(𝑡) =
√
𝐴 cos (𝑡+ 𝜙(𝑡)), (4.60)

one can find following equations for 𝐴(𝑡) and 𝜙(𝑡),

�̇� = 2𝐴 cos2 𝜓𝜂
(︁√

𝐴 sin𝜓,𝜑
)︁
, (4.61)

�̇� = −𝐴−1/2 sin𝜓𝐹
(︁√

𝐴 sin𝜓,𝜑
)︁
. (4.62)

Since the amplitude and the phase change scarcely during the period of oscilla
tions, the r.h.s. of Eqs.(4.61)-(4.62) can be replaced by their average over the
period, and, as a result, one obtain

�̇� = 𝐴𝜂(𝐴,𝜑), (4.63)

�̇� = −𝐴−1/2𝐹 (𝐴,𝜑). (4.64)

Here

𝜂(𝐴,𝜑) = (𝜋)−1

∫︁ 2𝜋

0

𝑑𝜓 cos2 (𝜓)𝜂
(︁√

𝐴 sin𝜓,𝜑
)︁
≡ 𝜅𝜉𝛼𝑊 (𝐴,𝜑), (4.65)

𝐹 (𝐴,𝜑) = (2𝜋)−1

∫︁ 2𝜋

0

𝑑𝜓 sin (𝜓)𝐹
(︁√

𝐴 sin𝜓,𝜑
)︁
. (4.66)

The pumping coefficient 𝜂(𝐴,𝜑) has an obvious physical meaning: it gives the
ratio between the energy supplied into the mechanical degree of freedom for one
period of mechanical oscillations with amplitude

√
𝐴 and the total mechanical

energy.
It is evident from Eq. (4.63) that stationary regimes �̇� = 0 are given by

equations 𝐴 = 0 (𝑥(𝑡) = 𝑥𝑠𝑡) and 𝜂(𝐴,𝜑) = 0. The first one is a static state of
the nanotube, and the second one corresponds to periodic oscillations with the
amplitude

√
𝐴𝑐, where𝑊 (𝐴𝑐,𝜑) = 0. The static regime is stable when 𝜂(0, 𝜑) < 0

and unstable otherwise. The stability of the periodic solution is defined by the
sign of the derivative 𝜕𝐴𝜂(𝐴,𝜑)|𝐴=𝐴𝑐

: if it is negative (positive), then the periodic
regime is stable (unstable). Then, analyzing Eqs. (4.50) and (4.65), one can
conclude that the pumping coefficient 𝜂(𝐴,𝜑) ∝ 𝜅 is an odd function of 𝜀𝑑 (the
first term in the r.h.s. of Eq. (4.53) does not give an contribution) and takes the
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Fig. 4.4 Plots of the function 𝑊 (𝐴), proportional to the pumping coefficient
𝜂(𝐴,𝜑), for different values of (a) the relative position of the dot energy level
𝜀𝑑 = 0.2; 1/

√
3; 2 for 𝜑 = 𝜋, and (b) the superconducting phase difference

𝜑 = 𝜋/3, 2𝜋/3, 𝜋 for 𝜀𝑑 = 1/
√
3. The zeroes of the functions correspond to the

amplitude of the limiting cycle [see the inset in (b)], which strongly depends on
the superconducting phase difference and reaches its maximum at 𝜑 = 𝜋. The

other parameters are ∆̃𝑑 = 1, 𝜅 = +1.

following limit values,

𝜂(0,𝜑) = 𝜅𝛼𝜉𝑊 (0,𝜑) = +𝜅𝛼𝜉
4𝜀𝑑∆̃𝑑

�̃�4(0,𝜑)
sin2

(︂
𝜑

2

)︂
, (4.67)

𝜂(𝐴→ ∞,𝜑) = 𝜅𝛼𝜉𝑊 (𝐴→ ∞,𝜑) = −𝜅𝛼𝜉 𝜀𝑑

2∆̃𝑑

, (4.68)

from which follows that at 𝜑 ̸= 0, the solution of the equation 𝑊 (𝐴𝑐,𝜑) = 0,
corresponding to the stationary periodic regime, exists at any values of the other
parameters. However, at small 𝜑≪ 1 the pumping coefficient, 𝜂(𝑥,𝜑), determined
by interaction with the electronic subsystem, is small and can be equalized by the
friction coefficient induced by the thermal environment. The case when 𝜑 = 0 is
very unstable with respect to the small asymmetry parameter |𝑎| ≪ 1 and will
be discussed in the next section, 4.1.7. The function 𝑊 (𝐴) and 𝐴𝑐 at different
𝜑 ≥ 1 and 𝜀𝑑 > 0 are presented in Figs. 4.4 and 4.5.
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Fig. 4.5 Dependencies of 𝐴𝑐 of the limiting cycles on the relative position of the
dot energy level 𝜀𝑑 (counted from the Fermi energy) for different values of (a)

∆̃𝑑 = 0.75; 1; 2.5 for 𝜑 = 𝜋, and (b) the superconducting phase difference
𝜑 = 𝜋/3, 2𝜋/3; 𝜋 for ∆̃𝑑 = 1.

It follows from Eq. (4.67) that if 𝜅𝜀𝑑 > 0 and 𝜑 ̸= 0, the static mechanical
state 𝑥 = 𝑥𝑠𝑡 ≪ 1 is unstable with respect to the appearance of bending oscilla
tions with amplitudes that exponentially increase in time with the increment

𝛾 = 𝜅𝛼𝜉𝑊 (0,𝜑). (4.69)

The latter takes its maximum at 𝜑 = 𝜋 for the fixed values of all other parame
ters (notice that 𝑥𝑠𝑡(𝜋) = 0). However, the increase saturates at the amplitude
√
𝐴𝑐, resulting in self-sustained oscillations at this amplitude. It should be noted

that the amplitude saturation in the system under consideration is a completely
internal effect and still takes place when the friction caused by interaction with a
thermodynamic environment is zero. A "self-saturation" effect was also reported
in [119] where a special magnetic NEM system was considered.
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4.1.7. Influence of the asymmetry and friction generated by a
thermodynamic environment.

In an experiment the presence of the asymmetry of tunnel contacts natu
rally arises. Following it, let us take into account the asymmetric superconducting
tunnel junctions with a parameter ∆𝑑1/∆𝑑2 = 𝜁, where 𝜁 = e−𝑎/𝜆 (see Eq. (4.8)).
Thus, by combining Eqs. (4.8) and (4.12), one gets that the asymmetry in the su
perconducting tunneling amplitudes results in a relative shift of a dot equilibrium
position and we need to do the following replacement in obtained formulae,

∆𝑑(𝑥,𝜑) → ∆𝑑(𝑥+ 𝑎,𝜑). (4.70)

In what follows it is convenient to introduce the re-normalized parameter of the
asymmetry, 𝑎/𝜆 → 𝑎. Then, for the criterion for the mechanical instability one
obtains 𝜂(0 + 𝑎,𝜑) > 0, where

𝜂(𝑎,𝜑) = 𝜅𝛼𝜉
∆̃𝑑

2�̃�6

[︁
∆̃2

𝑑 sinh (2𝑎)
(︁
�̃�2 + 4

)︁
{sin𝜑− 𝜀𝑑 sinh (2𝑎)}+

+ 8𝜀𝑑�̃�2
{︀
sin2 (𝜑/2) + sinh2 𝑎

}︀]︁
. (4.71)

From this inequality one can get that the mechanical subsystem is unstable when⎧⎨⎩|∆̃𝑑 sinh 𝑎| < ∆̃𝑐𝑟
𝑑 , 𝜀𝑑 > 0;

|∆̃𝑑 sinh 𝑎| > ∆̃𝑐𝑟
𝑑 , 𝜀𝑑 < 0;

𝜑 = 𝜋; (4.72)

⎧⎨⎩|∆̃𝑑 cosh 𝑎| < ∆̃𝑐𝑟
𝑑 , 𝜀𝑑 > 0;

|∆̃𝑑 cosh 𝑎| > ∆̃𝑐𝑟
𝑑 , 𝜀𝑑 < 0;

𝜑 = 0; (4.73)

or, ⎧⎨⎩|∆̃𝑑1 ± ∆̃𝑑2| < 2∆̃𝑐𝑟
𝑑 , 𝜀𝑑 > 0;

|∆̃𝑑1 ± ∆̃𝑑2| > 2∆̃𝑐𝑟
𝑑 , 𝜀𝑑 < 0.

(4.74)

Here "-" corresponds to the case 𝜑 = 𝜋 and "+" – to 𝜑 = 0, (𝜁 ̸= 1). The critical
value defined as

(∆̃𝑐𝑟
𝑑 )

2 =
1

2

(︂√︁
(3 + 𝜀2𝑑)

2 + 8(1 + 𝜀2𝑑)− (3 + 𝜀2𝑑)

)︂
, (4.75)
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is localized around 1, (∆̃𝑐𝑟
𝑠 )

2 ∈ [(
√
17 − 3)/2,2), because of lim𝜀𝑑→∞(∆̃𝑐𝑟

𝑑 )
2 = 2.

Another way to obtain the stability criteria is to present displacement in a form

𝑥(𝑡) ∼ e𝚤Ω𝑡, (4.76)

substitute into Eq. (4.50) and look for a solution of the inequality ImΩ < 0

which corresponds to the case of exponential increase of the amplitude of oscilla
tions of the QD. One can conclude from the above-mentioned stability criteria,
Eqs. (4.72)-(4.74), that the presence of "self-saturation" effect is not affected by
the asymmetry.

Note that an infinitesimal value of the asymmetry can result in the emer
gence of the mechanical instability even in the case of zero superconducting phase
difference. However, in the latter case the strength of the pumping is small and
need to be in comparison with the damping generated by the influence of an
thermodynamic equilibrium bath. In order to do this, we incorporate the phe
nomenological friction term +𝛾�̇� in the l.h.s. of Eq. (4.1). The friction coefficient
𝛾 is determined as ∝ 𝑄−1, where 𝑄 is the quality factor determined by interac
tion with the thermodynamic environment [128]. Thus, the mechanical instability
occurs if

𝛾 − 𝜂(𝑎,𝜑) < 0. (4.77)

It means that for small values of superconducting phase difference, 𝜑 < 1,
the pumping coefficient 𝜂(𝑥+ 𝑎,𝜑) determined by interaction with the electronic
subsystem, is much smaller than in case of 𝜑 ≈ 𝜋 and equalizes a friction coeffi
cient 𝛾 associated with the influence of a thermodynamic environment. It results
in competition between these two processes because the regime of self-sustained
oscillations emerges when the pumping is equal to damping. As a consequence,
friction induced by the interaction with a thermal bath leads to a decrease in the
amplitude of self-sustained oscillations. Nevertheless, as the pumping caused by
electronic non-equilibrium environment strongly depends on the superconducting
phase difference 𝜑, in the most pronounced case 𝜑 = 𝜋 it dominates over the
“thermodynamic” friction for high-quality nanomechanical resonators, 𝑄 ∼ 105.

Figures 4.6, 4.7 represent dependencies of function 𝑊 (𝐴) which is pro
portional to the pumping coefficient 𝜂(𝐴,𝜑) for different values of the asym
metry parameter 𝑎. Note that 𝑊 (𝐴) is an even function of 𝑎. One can see
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Fig. 4.6 Dependencies of the function 𝑊 (𝐴), proportional to the pumping
coefficient 𝜂(𝐴,𝜑), for different values of the asymmetry parameter |𝑎| = 0

(black thick curve, symmetric case); 0.2 (green dotted curve); 0.5 (blue
dotdashed); 0.65 (red densely dashed); 0.81 (orange loosely dashed curve) for

𝜑 = 𝜋, and 𝜀𝑑 = 1/
√
3. The zeroes of the functions correspond to the amplitude

of the limiting cycle. Other parameters are: ∆̃𝑑 = 1, 𝜅 = +1.

from Fig. 4.6, which corresponds to a case of maximal strength of the pumping,
𝜑 = 𝜋, 𝜀𝑑 = 1/

√
3, that the value of the amplitude of a limit cycle decreases when

the asymmetry increases (shift of the position of a zero of the function to the left).
The black curve is associated with the symmetric case (𝑎 = 0) and is the same
one as in Fig. 4.4. The orange curve corresponds to the critical value (with the
further increase of the asymmetry parameter the pumping is vanishes) obtained
from Eq. (4.75), (∆̃𝑐𝑟

𝑑 )
2 = 2/3 for 𝜀𝑑 = 1/

√
3. Figure 4.7 demonstrates the case

of 𝜑 = 0 when the effective pumping is negligibly small and, as a consequence, a
limit cycle of self-sustained oscillations does not occurs.

4.1.8. Transistor- and diode-like behaviour in electric current.

The self-sustained oscillations considered above have a very specific trans
port signature. This raises the possibility of detecting the mechanical instability
through an electric current measurement. To explore such a possibility, let us
consider the electric current through the system, 𝐼𝑛, determined in a standard



89

a=0

a=0.2

a=0.5

a=0.65

a=-0.81

0 1 2 3 4 5 6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

A

W
(A

)

Fig. 4.7 Dependencies of the function 𝑊 (𝐴), proportional to the pumping
coefficient 𝜂(𝐴,𝜑), for different values of the asymmetry parameter |𝑎| = 0

(black thick curve, symmetric case); 0.2 (green dotted curve); 0.5 (blue
dotdashed); 0.65 (red densely dashed); 0.81 (orange loosely dashed curve) for
𝜑 = 0, and 𝜀𝑑 = 1/

√
3. Other parameters are: ∆̃𝑑 = 1, 𝜅 = +1, 𝛾 = 10−5. The

functions take non-positive values which corresponds to the absent of
self-sustained oscillations in a limiting cycle.

way,
𝐼𝑛 = 𝑒𝜅Tr

{︁
ˆ̇𝑁𝜌
}︁
, (4.78)

where ˆ̇𝑁 = 𝑖[�̂�,�̂� ] and �̂� =
∑︀

𝑘𝜎 𝑎
†
𝑘𝜎𝑎𝑘𝜎 is the operator of the number of electrons

in the normal electrode. In the deep subgap regime considered above (∆𝑠 → ∞),
one can neglect quasiparticle current since it is exponentially small. As a result,
in the high bias voltage regime at 𝜅 = +1, where electron tunneling from the
QD to the normal leads is forbidden, an expression for 𝐼𝑛 can be easily obtained
by analyzing Fig. 4.2. From those diagrams, one can see that a decrease in the
number of electrons in the normal electrode is defined by two different processes.
The first one is the tunneling of an electron with spin up or down into the empty
dot. The rate of this process is 2Γ𝑛𝜌0, where 𝜌0 = (𝑅0 +𝑅3) /2 is the probability
that the dot is empty. The second one is the tunneling of an electron into the dot
occupied by a single electron with spin up or down. The rate of this process is
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Fig. 4.8 Dependencies of the dc electric current 𝐼𝑛 (normalized to 𝐼0 = 𝑒Γ𝑛) on
the relative position of the QD energy level 𝜀𝑑 for different values of

superconducting phase difference 𝜑 = 𝜋/3 (green dot-dashed curve), 2𝜋/3 (red
dotted), and 𝜋 (black solid) for ∆̃𝑑 = 1 and 𝜅 = +1. The maximum effect

occurs at 𝜑 = 𝜋 when the dc current is absent in the static regime, while it is
close to the maximum one in the stable stationary regime of the self-sustained

oscillations.

2Γ𝑛𝜌𝑒. Taking into account the normalization condition 2𝜌𝑒 +𝑅0 = 1, and using
a similar speculation for 𝑒𝑉𝑏 < 0, one gets from Eq. (4.44) the following equation
for 𝐼𝑛,

𝐼𝑛(𝑡) = 𝜅𝐼0 (1 + 𝜅𝑅3) , (4.79)

where 𝐼0 = 𝑒Γ𝑛. In the adiabatic limit one can use the expansion for �⃗� in the
perturbation theory over the adiabaticity parameter 𝛼, Eq. (4.44), and obtain for
the current the following equation,

𝐼𝑛(𝑡) = 𝜅𝐼0

[︂
|∆𝑑(𝑥,𝜑)|2

𝒟2(𝑥,𝜑)
+ 𝛼�̇�𝑓(𝑥) +𝒪(𝛼2)

]︂
. (4.80)

In the stationary regime corresponding to the generation of self-sustained
oscillations with amplitude

√
𝐴𝑐, the averaged over a period of the oscillations

electric current 𝐼𝑛 is defined as

𝐼𝑛 =
1

2𝜋

∫︁ 2𝜋

0

𝐼𝑛[𝑥(𝑡)]𝑑𝑡. (4.81)
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Fig. 4.9 Dependencies of the dc electric current 𝐼𝑛 (normalized to 𝐼0 = 𝑒Γ𝑛) on
the relative position of the QD energy level 𝜀𝑑 for 𝜅 = +1 (black solid curve,

associated with the same one in Fig. 4.8) and for 𝜅 = −1 when the bias voltage
is applied in the opposite direction (blue dashed curve), representing a diode-like

behaviour of the current. Other parameters: 𝜑 = 𝜋.

After the integrating of Eq. (4.80), the main contribution to the current with an
accuracy 𝛼2 (since the first-order term is averaging out) is given as

𝐼𝑛(𝜅,𝜀𝑑) = 𝜅𝐼0

[︂
∆2

𝑑 cos
2 (𝜑/2)

∆2
𝑑 cos

2(𝜑/2) + Γ2
𝑛 + 𝜀2𝑑

+ 𝜃(𝜅𝜀𝑑)𝛿𝐼(𝐴𝑐)

]︂
. (4.82)

Here the first term corresponds to the static dc current which crucially depends
on the superconducting phase difference 𝜑. In particular, the first term is equal
to zero at 𝜑 = 𝜋, in contrast to the second term,

𝛿𝐼(𝐴𝑐) =
1

2𝜋

∆2
𝑑(Γ

2
𝑛 + 𝜀2𝑑)

𝒟2(0,𝜑)

∫︁ 2𝜋

0

𝑑𝜓
sinh2

(︀√
𝐴𝑐 sin𝜓

)︀
𝒟2
(︀√

𝐴𝑐 sin𝜓,𝜑
)︀ > 0, (4.83)

which emerges exclusively due to the self-sustained oscillations and equals zero if
the static state is stable, as indicated by the Heaviside step function 𝜃(𝜅𝜀𝑑). The
maximal value of the current 𝛿𝐼𝑛(𝐴𝑐) can be estimated as

𝛿𝐼𝑚𝑎𝑥
𝑛 ≈ ∆2

𝑑 sinh
2√𝐴𝑐

∆2
𝑑 sinh

2√𝐴𝑐 + Γ2
𝑛 + 𝜀2𝑑

. (4.84)
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Dependencies of the current 𝐼𝑛 as a function of 𝜀𝑑 at ∆̃𝑑 = 1 and
𝜑 = 𝜋/3, 2𝜋/3, 𝜋 are presented in Figs. 4.8, 4.9. These graphs show that the
nanomechanical instability discussed in this article leads to the emergence of sig
nificant diode and transistor effects. The effects are most pronounced at 𝜑 = 𝜋

when in the static regime 𝐴𝑐 = 0 where the Cooper pair exchange between the dot
and the superconducting leads is completely blocked. In such a situation, a jump
in the average current from zero to a finite value ∼ 𝐼0 (or vice-versa) occurs if the
direction of the bias voltage changes (diode effect: for one direction of the bias
voltage the current is present but for the opposite one — absent (blocked)), see
Fig. 4.9 or if the position of the dot energy level 𝜀𝑑 controlled by the gate voltage
(third electrode in a transistor), passes zero (transistor effect), see Fig. 4.8. Note
that the discontinuity of the average current as a function of 𝜀𝑑 must be treated
to the accuracy 𝜉.

4.1.9. Numerical results.

The analytical procedure described above is done in the assumption of the
adiabatic limit, 𝛼 = 𝜔/(2Γ𝑛) ≪ 1. However, in order to enlarge the range of
parameters for which predicted effects are valid, the system of equations for the
dot density matrix elements coupled to the equation for the QD displacement,
Eqs. (4.21)-(4.22), was solved numerically.

Figure 4.10 demonstrates numerical solution results for the time evolution of
the QD displacement after a small initial spontaneous fluctuation of the nanotube
position, 𝑥0 = 0.01, in three different regimes. The stable regime is represented in
Fig. 4.10a. Figure 4.10b corresponds to the critical value of the dot energy level
𝜀𝑑 = 0 (the same as for 𝜑 = 2𝜋𝑛, where 𝑛 is an integer number) when the state of
the mechanical subsystem is neither stable, nor unstable. Lastly, in the regime of
presence of the mechanical instability, Fig. 4.10c, the amplitude of the dot oscilla
tions starts to exponentially grow after a small shift from its equilibrium position.
However, after some time, magnitude of the dot oscillations saturates and one has
the stable regime of self-sustained oscillations of the nanotube. It emerges even
without adding an external friction, 𝛾 = 0. The latter fact is associated with
the self-saturation effect occurred for the considered hybrid system. We should
note that Fig. 4.10 was obtained for the case of weak electromechanical coupling
𝜉 ≪ 1, in the adiabatic limit 𝛼 ≪ 1, and for other parameters which are the same



93

x(t)

010 000 50 000 100 000

-0.01

0

0.01

t

a)

x(t)

010 000 50 000 100 000

-0.01

0

0.01

t

b)

x(t)

0 10 000 50 000 100 000

-2

-1

0

1

2

t

c)

Fig. 4.10 Dependencies of the displacement 𝑥 (in units of the tunneling length
𝜆) of the QD in three different regimes realized for the system, on time (in units

of 𝜔). The figure (a) corresponds to the stable to an initial spontaneous
fluctuation (𝑥0 = 0.01) from an equilibrium position, regime, 𝜀𝑑 < 0. The figure

(b) corresponds to critical value, 𝜀𝑑 = 0 when the state of the mechanical
subsystem is not stable or unstable, either. And the figure (c) demonstrates the

time evolution of the QD oscillations in the regime when the mechanical
instability occurs, 𝜀𝑑 = +1/

√
3. The latter case is presented in Figs. 4.4, 4.5 by

the black curve. Other parameters used in numerical calculations:
𝜑 = 𝜋, ∆̃𝑑 = 1, 𝛼 = 0.05, 𝜉 = 10−2.

as for the black curve in Figs. 4.4-4.7 came up from analytical predictions. One
can see that the amplitude

√
𝐴𝑐 of the limit cycle given from Fig. 4.4 corresponds

to the amplitude of oscillations procured from Fig. 4.10c,
√
𝐴𝑐 ≈ 𝑥𝑚𝑎𝑥 ≈ 2. This

is a manifestation of strong validity of the analytical calculations.
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Fig. 4.11 Dependence of the amplitude
√
𝐴𝑐 of QD self-sustained oscillations

(normalized to the tunneling length 𝜆) on the adiabaticity parameter 𝛼. One can
note that the magnitude of the dot oscillation amplitude is maximal when
𝜔 ∼ Γ𝑛 and tends to zero in the diabatic regime. Other parameters used in

numerical calculations: 𝜅 = +1, 𝜀𝑑 = 1/
√
3, 𝜑 = 𝜋, ∆̃𝑑 = 1, 𝜉 = 10−2.

Figure 4.11 demonstrates dependence of the amplitude
√
𝐴𝑐 (𝑥𝑚𝑎𝑥) of nan

otube self-sustained oscillations (normalized to the tunneling length 𝜆) in the limit
cycle on the adiabaticity parameter 𝛼. It was obtained from numerical solutions
of the system of first-order differential equations for the matrix elements of the dot
density operator, Eq. (4.22), coupled to the second-order one for the dot displace
ment, Eq. (4.21). One can note that the amplitude is maximal in the resonant
case, when the frequency (in energy units) of the QD vibrations equals the energy
difference between Andreev levels. The later is in an associated agreement with
predictions for an electrical [169] and magnetic NEM system [119]. In addition,
one should take heed that for the case of an electrical electromechanical coupling,
in order to obtain a limit cycle, one need to take into account an thermodynamic
friction (damping), 𝛾 = 10−4−10−6 (for high-quality nanomechanical resonators).
Moreover, the maximal values of the amplitude for mechanically unstable case is
of order of magnitude as for the one in the adiabatic regime, more precisely, ap
proximately twice bigger. Nevertheless, the amplitude is negligible small in the
diabatic (anti-adiabatic) limit 𝛼 ≫ 1 that means the stability of the equilibrium
position of the nanotube in this regime. The adiabatic limit corresponds to the
case when a nanotube displacement varies very little during one act of electron
tunneling which is typically realized in experiments [137].
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4.2. Ground-state cooling of nanomechanical vibrations by Andreev
tunneling.

In this section a crucial influence of electron tunneling processes on a state
of the mechanical subsystem is discussed. The effect of the ground-state cooling
of vibrations of the nanotube is found. Also, a possibility to observe the cooling
effect in an experiment is demonstrated.

4.2.1. Quantum-mechanical description of the mechanical subsystem.

In the previous section the nanoelectromechanical weak link composed of the
carbon nanotube suspended above a trench in a normal metal electrode and posi
tioned in a gap between two superconducting leads, was considered. Such a setup
is a generalization of the experimentally implemented one [153], where a CNT sus
pended between normal and superconducting electrodes. The nanotube has been
treated as a movable single-level quantum dot, in which the position-dependent
superconducting order parameter is induced as a result of Cooper pair tunneling.
It has been shown that in such a system self-sustained bending vibrations can
emerge if a constant bias voltage is applied between normal and superconducting
electrodes. Such a process of electron transport, which essentially involves An
dreev conversion [149, 150] of normal electrons into Cooper pairs, we have called
by the Andreev injection. As a consequence, the interplay between coherent two
electron (Cooper pair) and incoherent single-electron tunneling into/out of the
movable part of the NEMS can result in pumping or cooling effect [151].

However, one can note from Eq. (4.80) that the direct eclectic current has
a contribution ∝ 𝑥2. It means that it is crucial to take into account quantum
fluctuations of the nanotube omitted within the semi-classical approach discussed
in the previous section, 4.1. In this section we treat the bending vibrations of the
nanotube quantum-mechanically which allow an investigation of the operation of
such a NEM device in the cooling regime.

Figure 4.12 is an another schematic representation of the system under
consideration. The Hamiltonian of the system consists of four terms,

𝐻 = 𝐻𝑑 +𝐻𝑣 +𝐻𝑙 +𝐻𝑡, (4.85)
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CNT

Gate

Fig. 4.12 Sketch of the nanoelectromechanical device under consideration. A
carbon nanotube (CNT) is suspended in a gap between two edges of a normal

electrode (𝑁) and tunnel coupled to it. Also, the CNT oscillates in the 𝑥
direction between two superconducting leads (𝑆1,2). This process affects the

values of the tunneling barriers between the QD and superconducting electrodes.
The normal electrode is biased by voltage 𝑉𝑏.

where the Hamiltonian 𝐻𝑑 of the single-level QD, the Hamiltonian 𝐻𝑙 = 𝐻𝑛
𝑙 +𝐻

𝑠
𝑙

of the normal and superconducting electrodes, the tunnel Hamiltonian 𝐻𝑡 = 𝐻𝑛
𝑡 +

𝐻𝑠
𝑡 are done by Eqs. (4.3)-(4.6), respectively. It needs to be stressed that now the

displacement �̂� is an operator. The Hamiltonian �̂�𝑣,

�̂�𝑣 =
𝑝2

2𝑚
+
𝑚𝜔2𝑥2

2
, (4.86)

describes the mechanical dynamic of the dot, 𝑝 and 𝑥 are the canonical conjugated
momentum and coordinate, [𝑝,𝑥] = −𝚤ℏ; 𝑚,𝜔 are the mass and eigenfrequency
of the dot, respectively.

4.2.2. Equations for Wigner distribution functions.

The time evolution of the system density matrix 𝜌 is described by the Li
ouville-von Neumann equation Eq. (4.9). We use the reduced density matrix
approximation according to which the full density matrix of the system 𝜌 is fac
torized to the tensor product of the equilibrium density matrices of the normal
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and superconducting leads, and the dot density matrix as:

𝜌 = 𝜌𝑛 ⊗ 𝜌𝑠 ⊗ 𝜌𝑑. (4.87)

Here the reduced density operator of the QD 𝜌𝑑 acts in the Hilbert space which
can be presented as the tensor product of the vibrational space of the harmonic
oscillator and the electronic space of the single-electron level on the QD.

By following the procedure introduced in subsection 4.1.2, we consider the
stationary state of the system in the deep subgap case ∆𝑠 ≫ |𝑒𝑉𝑏| ≫ ∆𝑑,Γ𝑛,
where ∆𝑑 = 2𝜋𝜈𝑠|𝑡𝑠0|2,Γ𝑛 = 2𝜋𝜈𝑛|𝑡𝑛0 |2 (𝜈𝑠(𝑛) is a density of states in the super
conducting (normal) electrode). Using the standard procedure [45], one can trace
out the lead degrees of freedom and obtain the following equation for the reduced
density matrix 𝜌𝑑,

− 𝚤
[︀
𝐻eff

𝑑 +𝐻𝑣,𝜌𝑑
]︀
+ ℒ𝑛{𝜌𝑑}+ ℒ𝛾{𝜌𝑑} = 0, (4.88)

where the effective Hamiltonian 𝐻𝑒𝑓𝑓
𝑑 is presented in Eq. (4.11) with the off-diago

nal dot order parameter, Eq. (4.12), induced by superconducting proximity effect
which is now is an operator,

∆𝑑(�̂�,𝜑) = ∆𝑑 cosh(�̂�/𝜆+ 𝑖𝜑/2). (4.89)

The Lindbladian term ℒ𝑛{𝜌𝑑} in Eq. (4.88) is induced by the incoherent electron
exchange between the normal lead and the QD and in the high bias voltage
regime, |𝑒𝑉𝑏| ≫ 𝜀0,ℏ𝜔, 𝑇 , takes the form of Eq. (4.13). Also, in Eq. (4.88) we
phenomenologically introduce the dissipation term ℒ𝛾{𝜌𝑑} [170],

ℒ𝛾{𝜌} = −𝑚𝜔𝛾 (𝑛𝐵 + 1/2) [𝑥, [𝑥,𝜌]]− 𝚤 (𝛾/2) [𝑥, {𝑝,𝜌}] , (4.90)

where 𝛾 is the damping rate, 𝑛𝐵 is the Bose-Einstein distribution function,

𝑛𝐵 =
1

𝑒ℏ𝜔/𝑇 − 1
, (4.91)

and 𝑇 is temperature of the thermodynamic environment.
The QD density matrix 𝜌𝑑 acts in the Hilbert space that can be presented as

a tensor product of the vibrational space of the harmonic oscillator and the Fock
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space of the single-level QD which is spanned on the state vectors |0⟩, 𝑑†↑(𝑑
†
↓)|0⟩ =

| ↑ (↓)⟩, 𝑑†↑𝑑
†
↓|0⟩ = | ↑↓⟩ ≡ |2⟩. It means the dot density matrix can be presented

as:

𝜌𝑑 = 𝜌𝑑(𝑥,𝑥
′) =

⎛⎜⎜⎜⎜⎝
𝜌0 𝜌02 0 0

𝜌20 𝜌2 0 0

0 0 𝜌↑ 0

0 0 0 𝜌↓

⎞⎟⎟⎟⎟⎠ . (4.92)

Thus, we get the following system of equations of motion for electronic components
of the density matrix 𝜌𝑑 (𝜅 = +1),

𝜕𝑡𝜌0 = −𝚤 [𝐻𝑣,𝜌0]− 4Γ𝑛𝜌0 − 𝚤∆𝑑(𝑥,𝜑)𝜌20 + 𝚤𝜌02∆
*
𝑑(𝑥,𝜑) + ℒ𝛾{𝜌0}, (4.93)

𝜕𝑡𝜌↑ = −𝚤 [𝐻𝑣,𝜌↑] + 2Γ𝑛(𝜌0 − 𝜌↑) + ℒ𝛾{𝜌↑}, (4.94)

𝜕𝑡𝜌↓ = −𝚤 [𝐻𝑣,𝜌↓] + 2Γ𝑛(𝜌0 − 𝜌↓) + ℒ𝛾{𝜌↓}, (4.95)

𝜕𝑡𝜌02 = −𝚤 [𝐻𝑣,𝜌02] + 2𝚤𝜀𝑑𝜌02 − 2Γ𝑛𝜌02 − 𝚤∆𝑑(𝑥,𝜑)𝜌2 + 𝚤𝜌0∆𝑑(𝑥,𝜑) + ℒ𝛾{𝜌02},(4.96)

𝜕𝑡𝜌20 = −𝚤 [𝐻𝑣,𝜌20]− 2𝚤𝜀𝑑𝜌20 − 2Γ𝑛𝜌20 − 𝚤∆*
𝑑(𝑥,𝜑)𝜌0 + 𝚤𝜌2∆

*
𝑑(𝑥,𝜑) + ℒ𝛾{𝜌20},(4.97)

𝜕𝑡𝜌2 = −𝚤 [𝐻𝑣,𝜌2] + 2Γ𝑛(𝜌↑ + 𝜌↓) + 𝚤𝜌20∆𝑑(𝑥,𝜑)− 𝚤∆*
𝑑(𝑥,𝜑)𝜌02 + ℒ𝛾{𝜌2}. (4.98)

Here ordering of the operators 𝜌𝑖𝑖 and ∆̂𝑑(�̂�,𝜑) is important. To find the equations
in case of the opposite direction of the bias voltage, 𝜅 = −1, one needs to switch
0 ⇄ 2, so that,

𝜕𝑡𝜌0 = −𝚤 [𝐻𝑣,𝜌0] + 2Γ𝑛(𝜌↑ + 𝜌↓) + 𝚤𝜌02∆𝑑(𝑥,𝜑)− 𝚤∆*
𝑑(𝑥,𝜑)𝜌20 + ℒ𝛾{𝜌0}. (4.99)

𝜕𝑡𝜌↑ = −𝚤 [𝐻𝑣,𝜌↑] + 2Γ𝑛(𝜌2 − 𝜌↑) + ℒ𝛾{𝜌↑}, (4.100)

𝜕𝑡𝜌↓ = −𝚤 [𝐻𝑣,𝜌↓] + 2Γ𝑛(𝜌2 − 𝜌↓) + ℒ𝛾{𝜌↓}, (4.101)

𝜕𝑡𝜌02 = −𝚤 [𝐻𝑣,𝜌02]− 2𝚤𝜀𝑑𝜌02 − 2Γ𝑛𝜌02 − 𝚤∆*
𝑑(𝑥,𝜑)𝜌2 + 𝚤𝜌0∆

*
𝑑(𝑥,𝜑) + ℒ𝛾{𝜌02},(4.102)

𝜕𝑡𝜌20 = −𝚤 [𝐻𝑣,𝜌20] + 2𝚤𝜀𝑑𝜌20 − 2Γ𝑛𝜌20 − 𝚤∆𝑑(𝑥,𝜑)𝜌0 + 𝚤𝜌2∆𝑑(𝑥,𝜑) + ℒ𝛾{𝜌20},(4.103)

𝜕𝑡𝜌2 = −𝚤 [𝐻𝑣,𝜌2]− 4Γ𝑛𝜌2 − 𝚤∆𝑑(𝑥,𝜑)𝜌02 + 𝚤𝜌20∆
*
𝑑(𝑥,𝜑) + ℒ𝛾{𝜌0}, (4.104)
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It is convenient to introduce the linear combinations of the density matrix elements
as follows:

𝑅𝑣 = 𝜌0 + 𝜌↑ + 𝜌↓ + 𝜌2,

𝑅0 = 𝜌0 + 𝜌2,

𝑅1 = 𝜌20 + 𝜌02,

𝑅2 = 𝚤(𝜌02 − 𝜌20),

𝑅3 = 𝜌0 − 𝜌2. (4.105)

Then the equations for the density matrix elements of the QD, Eqs. (4.93)-(4.98),
have the following form:

𝜕𝑡𝑅0 = −𝚤[𝐻𝑣, 𝑅0] + 2Γ𝑛(𝑅𝑣 − 2𝑅0 − 𝜅𝑅3) + 𝚤[𝑅1,∆
′(𝑥,𝜑)]− 𝚤[𝑅2,∆

′′(𝑥,𝜑)]

+ℒ𝛾{𝑅0}, (4.106)

𝜕𝑡𝑅3 = −𝚤[𝐻𝑣,𝑅3]− 2Γ𝑛(𝜅𝑅𝑣 +𝑅3) + {𝑅1,∆
′′(𝑥,𝜑)}+ {𝑅2,∆

′(𝑥,𝜑)}
+ℒ𝛾{𝑅3}, (4.107)

𝜕𝑡𝑅1 = −𝚤[𝐻𝑣,𝑅1] + 2𝜀𝑑𝑅2 − 2Γ𝑛𝑅1 + 𝚤[𝑅0,∆
′(𝑥,𝜑)]− {𝑅3,∆

′′(𝑥,𝜑)}
+ℒ𝛾{𝑅1}, (4.108)

𝜕𝑡𝑅2 = −𝚤[𝐻𝑣,𝑅2]− 2𝜀𝑑𝑅1 − 2Γ𝑛𝑅2 − 𝚤[𝑅0,∆
′′(𝑥,𝜑)]− {𝑅3,∆

′(𝑥,𝜑)}
+ℒ𝛾{𝑅2}, (4.109)

𝜕𝑡𝑅𝑣 = −𝚤[𝐻𝑣,𝑅𝑣] + 𝚤[𝑅1,∆
′(𝑥,𝜑)]− 𝚤[𝑅2,∆

′′(𝑥,𝜑)] + ℒ𝛾{𝑅𝑣}. (4.110)

The state of the mechanical subsystem is completely described by the re
duced density matrix,

𝜌𝑣 = Tr𝜌𝑑, (4.111)

where the tracing operation is taken over the electronic degrees of freedom on the
dot. It is obvious that in the limiting case 𝜆 → ∞ the electronic and vibronic
subsystems are independent and the reduced vibronic density matrix has a form
of equilibrium density matrix with the effective temperature that is determined
by an environment temperature 𝑇 .
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It is convenient and natural to use the description in terms of the Wigner
distribution function,

𝑊𝑖(𝑥,𝑝) =
1

2𝜋

∫︁
𝑑𝜉𝑒−𝚤𝑝𝜉

⟨
𝑥+

𝜉

2
|𝜌𝑖|𝑥−

𝜉

2

⟩
, (4.112)

see also section 3.5. In general, a Wigner function gives probability distributions
as: ∫︁

𝑑𝑝𝑊 (𝑥,𝑝) = ⟨𝑥|𝜌|𝑥⟩, (4.113)∫︁
𝑑𝑥𝑊 (𝑥,𝑝) = ⟨𝑝|𝜌|𝑝⟩, (4.114)

and is a bounded function,

− 2/ℏ ≤ 𝑊 (𝑥,𝑝) ≤ 2/ℏ, (4.115)

which is an evidence of the uncertainty principle. In addition, Eq. (4.112) can be
rewritten as follows:

𝑊𝑖(𝑥,𝑝) =
1

2𝜋

∫︁
𝑑𝜉𝑒𝚤𝑥𝜉

⟨
𝑝+

𝜉

2
|𝜌𝑖|𝑝−

𝜉

2

⟩
. (4.116)

Note that here and in what follows we introduce dimensionless variables: 𝑥/𝑥0 →
𝑥, 𝑝𝑥0/ℏ → 𝑝, where 𝑥0 is the amplitude of zero-point oscillations, all energy
parameters are measured in units of ℏ𝜔, the tunneling length 𝜆 is measured in
units of 𝑥0, 𝛾/𝜔 → 𝛾.

We are interested in a steady state regime of the mechanical subsystem
in the limit of weak electromechanical coupling 1/𝜆 ≪ 1. To find a form of
Eqs. (4.106)-(4.110) in the Wigner-Moyal representation to leading order in this
parameter, one can use the following expressions:

[𝐻𝑣, �̂�𝑖] → (𝑥𝜕𝑝 − 𝑝𝜕𝑥)𝑊𝑖(𝑥,𝑝), (4.117)

[�̂�,[�̂�,�̂�𝑖]] → −𝜕2𝑝𝑊𝑖(𝑥,𝑝), (4.118)

[�̂�,{𝑝,�̂�𝑖}] → 2𝚤𝜕𝑝𝑝𝑊𝑖(𝑥,𝑝); (4.119)

e�̂�/𝜆�̂�𝑖 → e𝑥/𝜆𝑊𝑖(𝑥,𝑝+ 𝚤/(2𝜆)) ≈ 𝑊𝑖(𝑥,𝑝) +
𝚤

2𝜆
𝜕𝑝𝑊𝑖(𝑥,𝑝), (4.120)

�̂�𝑖e�̂�/𝜆 → e𝑥/𝜆𝑊𝑖(𝑥,𝑝− 𝚤/(2𝜆)) ≈ 𝑊𝑖(𝑥,𝑝)−
𝚤

2𝜆
𝜕𝑝𝑊𝑖(𝑥,𝑝). (4.121)
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It results in that the steady-state equation for the Wigner function which describes
the mechanical degree of freedom, 𝑊𝑣(𝑥,𝑝), is given by the equation (up to terms
of the second order in the parameter 1/𝜆),

{(𝑥𝜕𝑝 − 𝑝𝜕𝑥) + ℒ𝛾}𝑊𝑣 = − 𝑥

𝜆2
∆𝑑 cos (𝜑/2)𝜕𝑝𝑊1 +

1

𝜆
∆𝑑 sin (𝜑/2)𝜕𝑝𝑊2.(4.122)

Here we assume 𝛾 ∼ (1/𝜆2). This equation is coupled to the steady state equation
for the vector-function �⃗� = (𝑊0,𝑊1,𝑊2,𝑊3)

𝑇 that takes the following form (up
to terms of the first order in the parameter 1/𝜆),

(𝑥𝜕𝑝 − 𝑝𝜕𝑥)�⃗� + 2�̂��⃗� = 𝐹 , (4.123)

�̂� =

⎛⎜⎜⎜⎜⎝
−2Γ𝑛 0 0 −𝜅Γ𝑛

0 −Γ𝑛 𝜀𝑑 0

0 −𝜀𝑑 −Γ𝑛 −∆𝑑 cos(𝜑/2)

0 0 ∆𝑑 cos(𝜑/2) −Γ𝑛

⎞⎟⎟⎟⎟⎠ ,

𝐹 = −2Γ𝑛𝑊𝑣

⎛⎜⎜⎜⎜⎝
1

0

0

−𝜅

⎞⎟⎟⎟⎟⎠+
∆𝑑

𝜆
sin(𝜑/2)

⎛⎜⎜⎜⎜⎝
𝜕𝑝𝑊2

2𝑥𝑊3

𝜕𝑝𝑊0

−2𝑥𝑊1

⎞⎟⎟⎟⎟⎠ .

Furthermore, it is convenient to change from (𝑥,𝑝) to polar coordinates
(𝐴,𝜙), so that, 𝑥− �̄� = 𝐴 sin𝜙 and 𝑝 = 𝐴 cos𝜙, where �̄� ∼ (1/𝜆) stands for an
equilibrium position of the dot. Then, equations (4.122)-(4.123) take the following
form:

−𝜕𝑊𝑣

𝜕𝜙
+ �̄�𝑇𝑊𝑣 + 𝛾 (𝑛𝐵 + 1/2)𝑇 2𝑊𝑣 + 𝛾

(︁
𝑊𝑣 + 𝐴 cos𝜙𝑇𝑊𝑣

)︁
−

−∆𝑑

𝜆
sin(𝜑/2)𝑇𝑊2 +

∆𝑑𝐴

𝜆2
cos(𝜑/2) sin𝜙𝑇𝑊1 = 0; (4.124)
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−𝜕
−→
𝑊

𝜕𝜙
+ 2�̂�

−→
𝑊 = 𝐹 , (4.125)

�̂� =

⎛⎜⎜⎜⎜⎝
−2Γ𝑛 0 0 −𝜅Γ𝑛

0 −Γ𝑛 𝜀𝑑 0

0 −𝜀𝑑 −Γ𝑛 −∆𝑑 cos(𝜑/2)

0 0 ∆𝑑 cos(𝜑/2) −Γ𝑛

⎞⎟⎟⎟⎟⎠ ,

𝐹 = −�̄�𝑇
−→
𝑊 − 2Γ𝑛𝑊𝑣

⎛⎜⎜⎜⎜⎝
1

0

0

−𝜅

⎞⎟⎟⎟⎟⎠+
∆𝑑

𝜆
sin(𝜑/2)

⎛⎜⎜⎜⎜⎝
𝑇𝑊2

2𝐴 sin𝜙𝑊3

𝑇𝑊0

−2𝐴 sin𝜙𝑊1

⎞⎟⎟⎟⎟⎠ .

Here the differential operator 𝑇 is defined according to the expression:

𝑇 ≡ 𝜕𝑝 = cos𝜙
𝜕

𝜕𝐴
− sin𝜙

𝐴

𝜕

𝜕𝜙
. (4.126)

Also, one can take a heed that (𝑥𝜕𝑝 − 𝑝𝜕𝑥) = −𝜕𝜙, 𝜕2𝑝 = (1/2𝐴)𝜕𝐴𝐴𝜕𝐴 and
𝜕𝑝𝑝 = (1/2𝐴)𝜕𝐴𝐴

2. Equations (4.124)-(4.125) have to be solved subject to the
periodic boundary conditions,

𝑊𝑣(𝐴,𝜙+ 2𝜋) = 𝑊𝑣(𝐴,𝜙), �⃗� (𝐴,𝜙+ 2𝜋) = �⃗� (𝐴,𝜙). (4.127)

We solve these equations by perturbation expansions,

𝑊𝑖(𝐴,𝜙)⟩ = 𝑊
(0)
𝑖 (𝐴,𝜙) +𝑊

(1)
𝑖 (𝐴,𝜙) + ..., (4.128)

(𝑖 = 𝑣,0,1,2,3), where 𝑊 (𝑛)
𝑖 is of 𝑛:th order in the parameter 1/𝜆 ≃ 10−2 −

10−3 [161] (or the parameter of electromechanical coupling, ∆𝑑/𝜆≪ 1).
It can be easily find from Eqs. (4.124)-(4.125) in zeroth order of the per

turbation theory that the functions 𝑊 (0)
𝑣 (𝐴,𝜙), �⃗� (0)(𝐴,𝜙) do not depend on 𝜙.
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Hence, 𝑊 (0)
𝑣 (𝐴,𝜙) = 𝑊

(0)
𝑣 (𝐴) and

𝑊
(0)
0 =

𝜀2𝑑 + Γ2
𝑛 + (∆2

𝑑/2) cos(𝜑/2)

𝐷2
𝑊 (0)

𝑣 , (4.129)

𝑊
(0)
1 = 𝜅

∆𝑑𝜀𝑑 cos(𝜑/2)

𝐷2
𝑊 (0)

𝑣 , (4.130)

𝑊
(0)
2 = 𝜅

∆𝑑Γ𝑛 cos(𝜑/2)

𝐷2
𝑊 (0)

𝑣 , (4.131)

𝑊
(0)
3 = −𝜅𝜀

2
𝑑 + Γ2

𝑛

𝐷2
𝑊 (0)

𝑣 , (4.132)

where
𝐷2 = 𝜀2𝑑 + Γ2

𝑛 +∆2
𝑑 cos

2(𝜑/2). (4.133)

From the requirement, 𝑊 (1)
𝑣 (𝐴,𝜙) = 𝑊

(1)
𝑣 (𝐴), to first order in the perturbation

theory, Eq. (4.124) determines an equilibrium position of the dot,

�̄� = 𝜅
∆2

𝑑

𝜆𝐷
sin(𝜑/2) cos(𝜑/2). (4.134)

In the second order of the perturbation theory from Eq. (4.124) one gets:

−𝜕𝑊
(2)
𝑣

𝜕𝜙
−∆𝑑

𝜆
sin (𝜑/2)𝑇𝑊

(1)
2 +

∆𝑑

𝜆
cos (𝜑/2)𝐴 sin𝜙𝑇𝑊

(0)
1 +�̄�𝑇𝑊 (1)

𝑣 +ℒ𝛾{𝑊 (0)
𝑣 } = 0.

(4.135)
Then, let us average this equation over the 𝜙 variable in an usual way,

⟨𝑊 (𝐴,𝜙)⟩ = 1

2𝜋

∫︁ 2𝜋

0

𝑑𝜙𝑊 (𝐴,𝜑). (4.136)

By substituting Eq. (4.126) into Eq. (4.136), one finds after straightforward cal
culations the following expression:

⟨𝑇𝑊 (𝐴,𝜙)⟩ = 1

𝐴

𝜕

𝜕𝐴
(𝐴⟨cos𝜙𝑊 (𝐴,𝜙)⟩) . (4.137)

From these equations one can see that the first, third and fourth terms in the
r.h.s. of Eq. (4.135) do not give an contribution, so that one obtains the following
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equation for 𝑊 (0)
𝑣 ,

−∆0 sin(𝜑/2)

𝜆𝐴

𝜕

𝜕𝐴

(︁
𝐴
⟨
cos𝜙𝑊

(1)
2

⟩)︁
+

𝛾

2𝐴

𝜕

𝜕𝐴

(︁
𝐴2𝑊 (0)

𝑣

)︁
+

+
𝛾 (𝑛𝐵 + 1/2)

2𝐴

𝜕

𝜕𝐴

(︃
𝐴
𝜕𝑊

(0)
𝑣

𝜕𝐴

)︃
= 0. (4.138)

Therefore, to get a closed equation for 𝑊 (0)
𝑣 (𝐴), one needs to know the function

𝑊
(1)
2 (𝐴,𝜙). This function can be determined from Eqs. (4.125) which in the first

order in the perturbation theory has a form:

−𝜕
⃗̃𝑊 (1)

𝜕𝜙
+ 2 ˆ̃𝑀 ⃗̃𝑊 (1) = ⃗̃𝐹, (4.139)

where ˆ̃𝑊 denotes an reduced vector-function ˆ̃𝑊 = (𝑊1,𝑊2,𝑊3)
𝑇 because of in the

first-order approximation the equation for the Wigner function 𝑊 (1)
0 is decoupled

from the other ones and is not relevant in what follows. Additionally,

ˆ̃𝑀 =

⎛⎜⎝ −Γ𝑛 𝜀𝑑 0

−𝜀𝑑 −Γ𝑛 −∆𝑑 cos(𝜑/2)

0 ∆𝑑 cos(𝜑/2) −Γ𝑛

⎞⎟⎠ ,

⃗̃𝐹 = −�̄�𝑇 ⃗̃𝑊 (0) − 2Γ𝑛𝑊
(1)
𝑣

⎛⎜⎝ 0

0

−𝜅

⎞⎟⎠+
∆𝑑

𝜆
sin(𝜑/2)

⎛⎜⎝ 2𝐴 sin𝜙𝑊
(0)
3

𝑇𝑊
(0)
0

−2𝐴 sin𝜙𝑊
(0)
1

⎞⎟⎠ .

The system of first-order differential equations, Eq. (4.139), can be solved exactly
by using the Fourier representation since this equation contains functions which
are periodic with the period of 2𝜋, 𝑊 (𝐴,𝜙+ 2𝜋) = 𝑊 (𝐴,𝜙),

𝑊
(1)
𝑖 (𝐴,𝜙) =

+∞∑︁
𝑛=−∞

𝑤(𝑛)e𝚤𝑛𝜙, 𝑤(𝑛) =
1

2𝜋

∫︁ 2𝜋

0

𝑊
(1)
𝑖 (𝜙)e−𝚤𝑛𝜙𝑑𝜙. (4.140)
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Furthermore, because of the structure of Eq. (4.138), one can note that only the
first harmonics (𝑛 = ±1) of the Fourier series, Eq. (4.140), give an contribution,

< cos𝜙𝑊
(1)
2 (𝐴,𝜙) >=

∑︁
𝑛

𝑤2(𝑛) [< cos𝜙 cos (𝑛𝜙) > +𝚤 < cos𝜙 sin (𝑛𝜙) >] =

=
∑︁
𝑛

𝑤2(𝑛)

⎧⎨⎩0, 𝑛 ̸= ±1,

1/2, 𝑛 = ±1;
=

1

2
(𝑤2(1) + 𝑤2(−1)) = Re𝑤2(1). (4.141)

Then, straightforward calculations leads to the following form of Eq. (4.138),

𝒟1
𝜕

𝜕𝐴

(︁
𝐴2𝑊 (0)

𝑣

)︁
+𝒟2

𝜕

𝜕𝐴

(︃
𝐴
𝜕𝑊

(0)
𝑣

𝜕𝐴

)︃
= 0, (4.142)

that is a stationary Fokker-Planck equation for the Wigner function 𝑊
(0)
𝑣 (𝐴),

which describes the state of the mechanical subsystem, with the drift 𝒟1 and
diffusive 𝒟2 coefficients,

𝒟1 = −𝜅∆
2
𝑑Γ𝑛𝜀𝑑
𝜆2𝐷1

sin2(𝜑/2) + 𝛾, (4.143)

𝒟2 =
∆2

𝑑Γ𝑛𝐶

𝜆2𝐷1
sin2(𝜑/2) + 𝛾 (𝑛𝐵 + 1/2) . (4.144)

Here

𝐷2 = 𝜀2𝑑 + Γ2
𝑛 +∆2

𝑑 cos
2(𝜑/2), (4.145)

𝐷1 =
(︀
𝐷2 − 1/4

)︀2
+ Γ2

𝑛, (4.146)

𝐶 =

(︀
𝐷2 + 1/4

)︀ (︀
𝐷2 + 𝜀2𝑑 + Γ2

𝑛

)︀
− 4∆2

𝑑Γ
2
𝑛 cos

2(𝜑/2)

4𝐷2
. (4.147)

The solution of Eq. (4.142) at small (in comparison to 𝜆) values of the amplitude
has a form of the Boltzmann distribution function,

𝑊 (0)
𝑣 (𝑥,𝑝) = (𝛽/𝜋) exp

[︀
−𝛽
(︀
𝑥2 + 𝑝2

)︀]︀
, (4.148)

where the coefficient 𝛽 = 𝒟1/2𝒟2.
The expressions, Eqs. (4.143), (4.144), define the framework of validity of

our consideration. It follows from Eqs. (4.143)-(4.147) that in the region which
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is related to the maximal cooling effect as we will show in the next section, 4.2.3,
(the range of the values of parameters (𝜑, 𝜀𝑑) near the point 𝜀𝑑 = 1/2, 𝜑 = 𝜋) the
value of the level width is restricted from below, Γ𝑛 ≥ Γ

(0)
𝑛 = ∆2

𝑑/𝜆
2.

4.2.3. Ground-state cooling of nanomechanical vibrations.

Nowadays, nanomechanical resonators with a significant value of the qual
ity factor are achieved in experiments [164, 171]. For such a case, the electrome
chanical coupling dominates the coupling with the thermodynamic environment,
1/𝜆 ≫ 𝛾. Thus, let us consider the case 𝛾 → 0. From Equations (4.143)-(4.144)
it follows that the sign of the coefficient 𝛽 is determined by the sign of 𝜅𝜀𝑑. If
𝜅𝜀𝑑 is positive, 𝛽 becomes negative. This situation corresponds to the mechanical
instability of the system and it was discussed in Ref. [3], see section 4.1. In what
follows we consider the vibronic (stable) regime, when 𝜅 = −1, 𝜀𝑑 > 0 (the same
for 𝜅 = +1, 𝜀𝑑 < 0).

The coefficient 𝛽 determines the probability 𝑃0 that the system is in its
ground state. In terms of Wigner distribution functions this probability takes a
form:

𝑃0 = 2𝜋

∫︁
𝑑𝑥𝑑𝑝𝑊 (0)

𝑣 (𝑥,𝑝)𝑊0(𝑥,𝑝) =
2𝛽

𝛽 + 1
, (4.149)

where
𝑊0(𝑥,𝑝) = (1/𝜋) exp[−(𝑥2 + 𝑝2)], (4.150)

is the Wigner function of the harmonic oscillator ground state. Note that accord
ing to Heisenberg’s uncertainty principle the maximal value of parameter 𝛽 is
equal to unity, 𝛽 ⩽ 𝛽max = 1.

Dependencies of the probability 𝑃0 as a function of the superconducting
phase difference 𝜑 for different values of the quantum dot energy level 𝜀𝑑 are
demonstrated in Fig. 4.13.

We can see that the maximal effect of cooling takes place in the region
𝜑 ≃ 𝜋, 𝜀𝑑 ≃ 1/2, the degree of cooling reaches the significant values, 𝑃0 ≃ 0.95.
One can estimate it as

𝑃0 =
2𝜀𝑑

𝜀𝑑 + 𝜀2𝑑 + Γ2
𝑛 + 1/4

, (4.151)

and, therefore, note that the maximal cooling effect occurs in the anti-adiabatic
regime, Γ𝑛 ≃ 0.2 < 1. More precisely, the extrema of the function 𝛽 are the
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Fig. 4.13 The ground state occupation probability 𝑃0 versus the superconducting
phase difference 𝜑 for different values of the quantum dot energy level: 𝜀𝑑 = 0.1

(blue dashed curve), 0.56 (black thick), 1.5 (red dotted), 5 (orange dot-dashed).
The black dotted line indicates the maximal value of the occupation probability.
Inset: zoomed central region where the cooling reaches its maximum at 𝜑 = 𝜋.

Other parameters: Γ𝑛 = 0.2;∆𝑑 = 25;𝜆 = 100; 𝛾 = 10−5, 𝑇 = 15ℏ𝜔.
.

following:

𝜑𝑒𝑥𝑡𝑟,𝑛 = 𝜋𝑛; 𝑛 ∈ Z, (4.152)

𝜑𝑒𝑥𝑡𝑟,± = 2arccos
±
√︁√︀

(𝜀2𝑑 + Γ2
𝑛)(16Γ

2
𝑛 + 1)− 2(𝜀2𝑑 + Γ2

𝑛)√
2∆𝑑

, (4.153)

and associated with the ones seen in Fig. 4.13.
Additionally, we calculate the probability distribution 𝑃𝑛. The probability

to find the mechanical subsystem being in a state 𝑛 is defined as:

𝑃𝑛 = 2𝜋

∫︁
𝑑𝑥𝑑𝑝𝑊 (0)

𝑣 (𝑥,𝑝)𝑊𝑛(𝑥,𝑝), (4.154)
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Fig. 4.14 The probability distribution 𝑃𝑛 for different values of the quantum dot
energy level: 𝜀𝑑 = 0.001 (blue dashed curve), 0.56 (black thick), 1.5 (red dotted),
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value of the ground-state occupation probability. Other parameters are the same
as in Fig. 4.13: Γ𝑛 = 0.2;∆𝑑 = 25;𝜆 = 100; 𝛾 = 10−5, 𝑇 = 15ℏ𝜔.

.

where now 𝑊𝑛(𝑥,𝑝) stands for the Winger function of the harmonic oscillator
corresponded to 𝑛th Fock state,

𝑊𝑛(𝑥,𝑝) =
(−1)𝑛

𝜋
e−(𝑥2+𝑝2)𝐿𝑛[2(𝑥

2 + 𝑝2)], (4.155)

where 𝐿𝑛(𝑥) denotes an 𝑛th Laguerre polynomial. Thus, 𝑛 = 0 (𝐿0(𝑥) = 1) gives
an special case of Eq. (4.150). Straightforward calculations leads to the following
expression for the probability 𝑃𝑛,

𝑃𝑛 =
2𝛽(1− 𝛽)𝑛

(1 + 𝛽)𝑛+1
=

(︂
1− 𝛽

1 + 𝛽

)︂𝑛

𝑃0, (4.156)

where 𝑃0 is defined by Eq. (4.149).
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4.2.4. Non-monotonic behaviour of electric current.

The effect of cooling of the mechanical vibrations can be explored by dc
current measurements. The Wigner distribution function gives the possibility to
calculate various physical quantities. The electric current through the system can
be defined in a standard way as a change of the number of electrons in the normal
lead, see Eq. (4.78). Thus, one can obtain the following expression for the electric
current in terms of Wigner functions, analogous to Eq. (4.79),

𝐼/𝐼0 = 𝜅

∫︁ 2𝜋

0

𝑑𝜙

∫︁ ∞

0

𝑑𝐴𝐴[𝑊𝑣(𝐴,𝜙) + 𝜅𝑊3(𝐴,𝜙)], (4.157)

where 𝐼0 = 𝑒Γ𝑛/ℏ. In the zeroth order of perturbation theory over the parameter
of the electromechanical coupling, using Eqs. (4.129) and (4.148), we get the
expression for the static current (see the first term in the r.h.s. of Eq. (4.1.8)),

𝐼(0)𝑛 = 𝐼0
∆2

𝑑 cos
2 (𝜑/2)

Γ2
𝑛 + 𝜀2𝑑 +∆2

𝑑 cos
2(𝜑/2)

. (4.158)

From this equation one can see that the current 𝐼(0)𝑛 is equal to zero at 𝜑 = 𝜋

despite the fact of maximal effect of cooling in this regime we are interested
the most. Therefore, we need to consider next-order corrections. From Equa
tion (4.157) one notes that in order to find the next perturbation order terms,
one need to know the functions 𝑊 (1),(2)

𝑣 and 𝑊 (1),(2)
3 , at least. This fact leads to

the requirement to include in Eqs. (4.122),(4.123) a contribution from the next
order of the perturbation theory.

However, one can avoid to do that because of the fact that due to the
geometry of our system, the normal current is equal to the sum of the partial
currents corresponding to the superconducting electrodes, 𝐼𝑛 = 𝐼

(𝑠)
1 + 𝐼

(𝑠)
2 . Here

the supercurrent in the 𝑗 superconducting lead is determined by the change of
the number of Cooper pairs and can be presented as:

𝐼
(𝑠)
𝑗 =

2𝑒

ℏ
Tr
(︂
𝜕𝐻eff

𝑑

𝜕𝜑𝑗
𝜌𝑑

)︂
, (4.159)
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where one should take into account that in more general case the expression for
the dot order parameter is following:

∆𝑑(𝑥,𝜑) =
1

2
∆𝑑(e−𝑥/𝜆−𝚤𝜑1 + e𝑥/𝜆−𝚤𝜑2). (4.160)

Then,
𝐼𝑗 = 𝚤𝑒𝜔∆𝑑Tr

{︁
e(−1)𝑗𝑥/𝜆

(︀
e𝚤𝜑𝑗𝜌02 − e−𝚤𝜑𝑗𝜌20

)︀}︁
. (4.161)

In terms of Wigner functions the expression for the electric current takes a form:

𝐼𝑛 = 𝑒𝜔

∫︁
𝑑𝑥𝑑𝑝 [∆𝑑 sin(𝜑/2) sinh(𝑥/𝜆)𝑊1+

+ ∆𝑑 cos(𝜑/2) cosh(𝑥/𝜆)𝑊2] , (4.162)

which is convenient to be re-written in the polar coordinates (angle-action repre
sentation) up to the second-order terms in the perturbation theory as

𝐼𝑛 = 𝑒𝜔∆𝑑

∫︁ 2𝜋

0

𝑑𝜙

∫︁ ∞

0

𝑑𝐴𝐴

{︂
sin (𝜑/2)

[︂
𝐴 sin𝜙

𝜆
𝑊

(0)
1 +

𝐴 sin𝜙

𝜆
𝑊

(1)
1

]︂
+

+ cos (𝜑/2)

[︂
𝑊

(0)
2 +𝑊

(2)
2 +

𝐴2 sin2 𝜙

2𝜆2
𝑊

(0)
2

]︂}︂
. (4.163)

From this equation one can find that zeroth-order terms give Eq. (4.158), the
contribution of the first-order corrections equals to zero, and the non-zero sec
ond-order contribution (the second term in the integrand) at 𝜑 = 𝜋 is

𝐼(2)𝑛 = 𝑒𝜔2𝜋
∆𝑑

𝜆

∫︁ ∞

0

𝑑𝐴𝐴2Im𝑤1(1). (4.164)

Thus, at 𝜑 = 𝜋 the current is determined by the mechanical fluctuations and in
the leading order (second) of the electromechanical coupling parameter it reads
as

𝐼𝑛 = 𝐼0

(︂
∆𝑑

𝜆

)︂2
(︀
Γ2
𝑛 + 𝜀2𝑑 + 1/4

)︀
⟨𝑥2⟩+ 𝜀𝑑/2

(Γ2
𝑛 + 𝜀2𝑑 − 1/4)

2
+ Γ2

𝑛

, (4.165)

where the ⟨...⟩ denote the average value in the phase space with 𝑊 (0)
𝑣 (𝑥,𝑝) and

⟨𝑥2⟩ = (2𝛽)−1. (4.166)
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Fig. 4.15 The dependence of the electric current (normalized to 𝐼0) on the
quantum dot level energy 𝜀𝑑 at 𝜑 = 𝜋 for different values of Γ𝑛 : Γ𝑛 = 0.2 (black
thick curve), Γ𝑛 = 1 (red dotted), Γ𝑛 = 3 (orange dot-dashed). Inset: the ground

state occupation probability versus the QD level energy. Other parameters:
∆𝑑 = 5,𝜆 = 50, 𝛾 = 5× 10−5, 𝑇 = 15.

Figure 4.15 presents the dependence of the electric current on the quantum
dot level energy 𝜀𝑑 for different values of Γ𝑛 at 𝜑 = 𝜋. We can see the pronounced
drop of the current which corresponds to the cooling regime as one can note from
the inset where the ground-state probability increase occurs in this case. This
maximum-minimum structure disappears in the heating regime (𝑃0 ≲ 0.5). Also,
one can see the maximum of the current in the case of 2𝜀𝑑 = Γ𝑛 at Γ𝑛 → 0. It is a
resonant peak and has therefore a different from cooling nature and is discussed,
for example, in Ref. [151] for a hybrid N-QD-S device. Thus, the above-mentioned
facts can serve as a criterion that the system is in the cooling regime.

Conclusions

In this chapter the nanomechanical weak link that involves a carbon nan
otube suspended between two normal leads and biased by a constant voltage is
considered. The nanotube, which is treated as a single-level quantum dot, per
forms bending vibrations in a gap between two superconducting electrodes. The



112

coupling between the electronic and mechanical degrees of freedom is induced due
to the superconducting proximity effect which exhibits in the appearance of the
position-dependent dot order parameter.

On the one hand, in the first section we demonstrate that in such a sys
tem, the static, straight configuration of the nanotube is unstable regarding the
occurrence of self-sustained bending vibrations in a wide range of parameters if
a bias voltage is applied between the normal and superconducting leads. It is
shown that the occurrence of this mechanical instability crucially depends on the
direction of the bias voltage and the relative position of the QD level. We have
also shown that the appearance of self-sustained mechanical vibrations strongly
affects the dc current through the system, leading to transistor and diode effects.
The latter can be used for the direct experimental observation of the predicted
phenomena.

On the other hand, in the second section, using the density matrix approxi
mation, we find that at certain direction of the applied bias voltage, the stationary
state of the mechanical subsystem has a Boltzmann form. Moreover, the proba
bility to find the system in the ground state has been demonstrated to be 𝑃0 ≲ 1.
The latter is related to the cooling regime of the considered system. Additionally,
the probability depends on the superconducting phase difference and the relative
position of the QD energy level in a key manner. Also, we have discussed that
the direct electric current behaviour mirrors the stationary state of the system.

Thus, the clear possibility to govern the operating mode of the device by
changing the bias and gate voltages is demonstrated and the schemes for an
experimental detection of the predicted effects are proposed.

The main results of this chapter are published in Refs. [3, 4, 9, 172].
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CONCLUSIONS

In the works this dissertation based on, phenomena which emerge due to an
electromechanical coupling in nano-structures based on a movable quantum dot,
are investigated.

The main results are the following:
1. The electron transport through an single-molecule transistor with coher

ent vibrons was theoretically investigated. It has been shown that cur
rent-voltage characteristics of such a nanoscale transistor are step-like
functions of the bias voltage similarly to the polaronic ones. However,
the lifting of this coherent-oscillation induced blockade occurs at voltages
much lower than the ones predicted within Franck-Condon theory.

2. The possibility to generate quantum entanglement between charge qubit
states and mechanical coherent ones in a nanoelectromechanical system
was shown. The experimentally simple protocol of the bias voltage manip
ulation, which results in the formation of entangled states incorporating
"cat states", was proposed.

3. The non-trivial behavior of a hybrid nanoelectromechanical device, which
emerges due to a fundamentally new type of electromechanical coupling
based on the quantum delocalization of Cooper pairs, has been theoret
ically investigated. The range of existence of the mechanical instability
in such a system was theoretically found. Moreover, the instability re
sults in the generation of self-sustained mechanical oscillations under the
self-saturation effect.

4. The regime when the stationary state of the mechanical subsystem of the
hybrid nanoelectomechanical system has a Boltzmann form determined
by parameters of the device, was investigated. In this case the probability
to find the system in the ground state was shown to be sufficiently large
which corresponds to the ground-state cooling effect in the system.

5. It has been theoretically demonstrated that the mechanical vibrations in
the hybrid nanoelectromechanical device strongly affect the direct electric
current through the one. It allows to probe experimentally the presence
and characteristics of the predicted self-sustained oscillations as well as
the cooling effect.
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