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Abstract. We apply the method of nonlinear steepest descent to compute

the long-time asymptotics of the Toda lattice with steplike initial data corre-
sponding to a rarefaction wave.

1. Introduction

In this paper we consider the doubly infinite Toda lattice

ḃ(n, t) = 2(a(n, t)2 − a(n− 1, t)2),

ȧ(n, t) = a(n, t)(b(n+ 1, t)− b(n, t)),
(n, t) ∈ Z× R,(1.1)

with steplike initial profile

a(n, 0)→ a, b(n, 0)→ b, as n→ −∞,

a(n, 0)→ 1

2
b(n, 0)→ 0, as n→ +∞,

(1.2)

where a > 0, b ∈ R satisfy the condition

(1.3) 1 < b− 2a.

This inequality implies that the spectra of the left and right background operators
H` and Hr have the following mutual location:

supσ(Hr) < inf σ(H`).

In the case when a = 1
2 , the initial value problem (1.1)–(1.3) is called rarefaction

problem. We keep this name for an arbitrary a > 0 and refer to the case a = 1
2

as the classical rarefaction (CR) problem. The long-time asymptotics of the CR
problem were studied rigorously by Deift et al. [5] in 1996 in the transitional region
where ξ := n

t ≈ 0 as t → +∞. To this end the authors applied the nonlinear
steepest descent approach for vector Riemann–Hilbert (RH) problems. Using the
same approach, our aim is to study the region n

t ∈ (−2a+ ε,−ε)∪ (ε, 1− ε), where
ε > 0 is a sufficiently small number. Note that the regions n

t ∈ (−∞,−2a− ε) and
n
t ∈ (1 + ε,+∞), which are called the soliton regions, can also be studied by the

vector RH approach (see [14] for decaying initial data a = 1
2 , b = 0). Although

the considerations for the soliton regions in the rarefaction case are somewhat more
technical than in the decaying case, they are essentially the same and lead to a
sum of solitons on the respective constant background. In our opinion, the classical
inverse scattering transform, with the analysis of the Marchenko equation, provides
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this result easier ([2, 3, 4, 19]), and consequently we will not study the soliton
regions in this paper. On the other hand, the transitional regions n

t ≈ 1, nt ≈ 0 and
n
t ≈ −2a require further study and are also not the subject of the present paper.

For related results using an ansatz based approach see [15]. For results on the
corresponding shock problem see [11, 16, 20] and the references therein. For a
general overview we refer to [17].

In summary, we will show that there are four principal sectors with the following
asymptotic behavior:

• In the region n > t, the solution {a(n, t), b(n, t)} is asymptotically close
to the constant right background solution { 1

2 , 0} plus a sum of solitons
corresponding to the eigenvalues λj < −1.

• In the region 0 < n < t, as t→∞ we have

(1.4) a(n, t) =
n

2t
+O

(1

t

)
, b(n, t) = 1 +

1
2 − n
t

+O
(1

t

)
.

• In the region −2at < n < 0, as t→∞ we have

(1.5) a(n, t) = −n+ 1

2t
+O

(1

t

)
, b(n, t) = b− 2a−

n+ 3
2

t
+O

(1

t

)
.

• In the region n < −2at, the solution of (1.1)–(1.3) is close to the left
background solution {a, b} plus a sum of solitons corresponding to the
eigenvalues λj > b+ 2a.

The main terms of asymptotics (1.4) and (1.5) are solutions of the Toda lattice
equation. The terms O(t−1) are uniformly bounded with respect to n, they are
differentiable with respect to t, and the first derivatives are of order O( nt3 ). In the
two middle regions we derive a precise formula for these error terms (see Theorem
5.1 and Proposition 6.1 below).

The following picture demonstrates the expected behavior of the Toda lattice
solution in the middle regions. The numerically computed solution in Fig. 1 cor-
responds to “pure” steplike initial data a(n, 0) = 1

2 , b(n, 0) = 0 for n ≥ 0 and
a(n, 0) = 0.4, b(n, 0) = 2 for n < 0. The apparent line is due to the fact that
neighboring points are very close due to the scaling. We observe that the analyti-
cally obtained asymptotics (1.4), (1.5) and the numerically computed asymptotics
match well. In particular, in the analytical case the coefficient b(n, t) has a jump
in the transition region n

t ≈ 0 as well.
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Figure 1. Toda rarefaction problem with non-overlapping back-
ground spectra σ(H`) = [1.2, 2.8], σ(Hr) = [−1, 1]; a = 0.4, b = 2.
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To simplify considerations we assume in addition to (1.2) that the initial data
decay to their backgrounds exponentially fast

(1.6)

∞∑
n=1

eνn
(
|a(−n, 0)− a|+ |b(−n, 0)− b|+ |a(n, 0)− 1

2 |+ |b(n, 0)|
)
<∞,

where ν > 0 is an arbitrary small number. This condition allows to continue the
right reflection coefficient analytically in a small vicinity of the respective spectrum.

2. Statement of the Riemann–Hilbert problem

Let us first recall some elementary facts from scattering theory for Jacobi op-
erators with steplike backgrounds from [7, 8, 9, 10] (see also [18] Chapter 10 for
general background). The spectrum of the Jacobi operator H(t) associated with
the equation

(2.1) H(t)y(n) := a(n−1, t)y(n−1)+b(n, t)y(n)+a(n, t)y(n+1) = λy(n), λ ∈ C,

consists of two intervals [−1, 1]∪[b−2a, b+2a] of continuous spectrum with multiplic-
ity one, plus a finite number of eigenvalues, {λj}Nj=1 ⊂ R\ ([−1, 1]∪ [b−2a, b+2a]).
In addition to the spectral parameter λ we will use two other parameters z and ζ,
connected with λ by the Joukovski transformation

(2.2) λ =
1

2

(
z + z−1

)
= b+ a

(
ζ + ζ−1

)
, |z| ≤ 1, |ζ| ≤ 1.

Introduce the Jost solutions ψ(z, n, t), ψ`(z, n, t) of (2.1) with asymptotic behaviour

lim
n→∞

z−nψ(z, n, t) = 1, |z| ≤ 1; lim
n→−∞

ζnψ`(z, n, t) = 1, |ζ| ≤ 1.

Denote

q1 = z(b− 2a), q2 = z(b+ 2a), zj = z(λj), j = 1, . . . , N,

where

z(λ) = λ−
√
λ2 − 1.

The points z = −1 and z = 1 correspond to the edges of the spectrum of the right
background Jacobi operator, and q2 and q1 correspond to the respective edges of
the left background operator. We will call the points zj discrete spectrum. Denote
T = {z : |z| = 1} and D = {z : |z| < 1}. The map z 7→ λ is one-to-one between the
closed domains D := clos(D \ [q2, q1]) and D := clos(C \ ([−1, 1] ∪ [b− 2a, b+ 2a])).
We treat closure as adding to the boundary the points of the upper and lower
sides along the cuts, while considering them as distinct points. Since the function
ζnψ`(z) is in fact an analytical function of ζ, it takes complex conjugated values on
the sides of the cut along the interval I := [q2, q1], which we denote as I ± i0. Note
that z ∈ I − i0 corresponds to the arc ζ ∈ {|ζ| = 1, Im ζ < 0}. The Jost solution
ψ`(z) takes equal real values at z, z−1 ∈ T, which yields the respective properties of
the scattering matrix as a function of z. This matrix consist of the right (resp., left)
reflection coefficient R(z, t) (resp. R`(z, t)), defined for |z| = 1 (resp., |ζ| = 1), and
the transmission coefficients T (z, t) and T`(z, t) defined on D. They are connected
by the scattering relations

T (z, t)ψ`(z, n, t) = ψ(z, n, t) +R(z, t)ψ(z, n, t), |z| = 1,

T`(z, t)ψ(z, n, t) = ψ`(z, n, t) +R`(z, t)ψ`(z, n, t), z ∈ I ± i0.
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Here we list only those properties of the scattering data which will be used in the
present paper. Moreover, let zj , 1 ≤ j ≤ N , (note |zj | < 1) be the eigenvalues and
set

γj(t) :=
(∑

Z
ψ2(zj , n, t)

)−2

, j = 1, . . . , N,

χ(z, t) := − lim
ε→0

T (z − iε, t)T`(z − iε, t), z ∈ I.(2.3)

The set of the right scattering data

(2.4) {R(z, t), z ∈ T; χ(z, t), z ∈ I; (zj , γj(t)), 1 ≤ j ≤ N}
defines the solution of the Toda lattice uniquely. Under condition (1.6) it has the
following properties ([5, 8]):

• The function R(z, t) is continuous and R(z−1, t) = R(z, t) = R−1(z, t) for
z ∈ T. We have R(−1) = −1 if z = −1 is non-resonant1 and R(−1) = 1
if z = −1 is resonant. The function R(z) can be continued analytically in
the annulus e−ν < |z| < 1.

• The right transmission coefficient T (z, t) can be restored uniquely from
(2.4) for z ∈ D. It is a meromorphic function with simple poles at zj .

• The function χ(z, t) is continuous for z ∈ (q2, q1) and vanishes at qi, i =
1, 2, iff qi is a non-resonant point. If qi is a resonant point, χ(z) = (z −
qi)
−1/2. The transmission coefficient has the same behavior at qi as χ(z, t).

On the set D we define a vector-valued function m(z) = (m1(z, n, t),m2(z, n, t))

(2.5) m(z, n, t) =
(
T (z, t)ψ`(z, n, t)z

n, ψ(z, n, t)z−n
)
.

Lemma 2.1 ([11]). The components of m(z, n, t) have the following asymptotical
behavior as z → 0

(2.6)

m1(z, n, t) =

∞∏
j=n

2a(j, t)
(

1 + 2z

∞∑
m=n

b(m, t)
)

+O(z2),

m2(z, n, t) =

∞∏
j=n

(2a(j, t))−1
(

1− 2z

∞∑
m=n+1

b(m, t)
))

+O(z2).

Evidently m1(z) is a meromorphic function with poles at zj . Let us extend m

to the set {z : |z| > 1} \ I∗, I∗ := [q−1
2 , q−1

1 ], by m(z−1) = m(z)σ1, where σ1 is the
first Pauli matrix. Recall that the Pauli matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

we will also use them in abbreviations as for example

[d(z)]−σ3 :=

(
d−1(z) 0

0 d(z)

)
.

Moreover, m2(z) is a meromorphic function in {z : |z| > 1} \ I∗ with poles at z−1
j .

By definition the vector function m(z), z ∈ C, has jumps along the unit circle
and along the intervals I and I∗. The statement of the respective Riemann-Hilbert
problem with pole conditions is given in [5]. We will not formulate this problem

1The point ẑ ∈ {−1, 1, q1, q2} is called a resonant point if W (ẑ, t) = 0, where W (z, t) :=
a(n− 1, t)(ψ`(z, n− 1, t)ψ(z, n, t)−ψ`(z, n, t)ψ(z, n− 1, t)) is the Wronskian of the Jost solutions.
If W (ẑ, t) 6= 0, then ẑ is non-resonant.
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here, but instead give an equivalent statement which is valid in the domain ξ :=
n
t ∈ (−2a, 0) ∪ (0, 1) we are interested in. In this domain we can reformulate the
initial meromorphic RH problem as a holomorphic RH problem as [5, 14]. We skip
the details and only provide a brief outline below.

Throughout this paper, m+(z) (resp. m−(z)) will denote the limit of m(p) as p→
z from the positive (resp. negative) side of an oriented contour Σ. Here the positive
(resp. negative) side is the one which lies to the left (resp. right) as one traverses the
contour in the direction of its orientation. Using this notation implicitly assumes
that these limits exist in the sense that m(z) extends to a continuous function
on the boundary. Moreover, all contours are symmetric with respect to the map
z 7→ z−1, i.e., they contain with each point z also z−1. The orientation on these
contours should be chosen in such a way that the following symmetry is preserved
for the jump matrix of the vector RH problem and for its solution.

Symmetry condition. Let Σ̂ be a symmetric oriented contour, which contains
a symmetric arc Σ = Σ̂∩T. Then the jump matrix of the vector problem m+(z) =
m−(z)v(z) satisfies

(2.7) (v(z))−1 = σ1v(z−1)σ1, as z ∈ Σ; v(z) = σ1v(z−1)σ1, as z ∈ Σ̂ \ Σ.

Moreover,

(2.8) m(z) = m(z−1)σ1, as z ∈ C \ Σ̂.

If we reverse the orientation of the contour, we will denote this contour by Σ̂−1.
Most of our transformations are conjugations with diagonal matrices, so it is

convenient to use the following

Lemma 2.2 (Conjugation, [13]). Let m be the solution on C of the RH problem

m+(z) = m−(z)v(z), z ∈ Σ̂, which satisfies the symmetry condition as above. Let
d : C \ Σ→ C be a sectionally analytic function. Set

(2.9) m̃(z) = m(z)[d(z)]−σ3 ,

then the jump matrix of the problem m̃+ = m̃−ṽ is given by

ṽ =



(
v11 v12d

2

v21d
−2 v22

)
, p ∈ Σ̂ \ Σ,(

d−
d+
v11 v12d+d−

v21d
−1
+ d−1
−

d+

d−
v22

)
, p ∈ Σ.

If d satisfies d(z−1) = d(z)−1 for z ∈ C \ Σ, then the transformation (2.9) respects
the symmetry condition.

Recall now that the behavior of the solution of the RH problem is determined
mostly by the behavior of the phase function

(2.10) Φ(z) = Φ(z, ξ) =
1

2

(
z − z−1

)
+ ξ log z.

In the domain ξ ∈ (0, 1) which we study in more detail, part of the eigenvalues lie
in the domain Re Φ(z) > 0 (namely the points zk ∈ (−1, 0)) while the remaining
eigenvalues belong to the set Re Φ(z) < 0. The pole conditions at the eigenvalues
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are given by ([14])

Reszj m(z) = lim
z→zj

m(z)

(
0 0

−zjγje2tΦ(zj) 0

)
,

Resz−1
j
m(z) = lim

z→z−1
j

m(z)

(
0 z−1

j γje
2tΦ(zj)

0 0

)
.

Let δ be a sufficiently small number such that the circles Tj = {z : |z − zj | =
δ} around the eigenvalues do not intersect and lie away from the set T ∪ I (the
precise value of δ will be chosen later). We consider the circles as contours with
counterclockwise orientation. Denote their images under the map z 7→ z−1 as T∗j .
These curves are not circles, but they surround the points z−1

j with minimal distance

from the curve to zj given by δ
zj(zj−δ) . The curves T∗j are oriented counterclockwise

as well. Now redefine m(z) inside these curves according to

mhol(z) =

{
m(z)A(z), {|z − zj | < δ} ∪ {|z−1 − zj | < δ}},
m(z), else,

where

A(z) =

(
1 0

zjγje
2tΦ(zj)

z−zj 1

)
, |z − zj | < δ, and A(z−1) = σ1A(z)σ1.

Then the vector function mhol is holomorphic near zj , z
−1
j and has an additional

jump,

mhol
+ (z) = mhol

− (z)A(z), z ∈ Tj ∪ T∗j .
Let

(2.11) P (z) =
∏

zk∈(−1,0)

|zk|
z − z−1

k

z − zk
.

be the Blaschke product which corresponds to the eigenvalues zk which lie in the
domain Re Φ(z) > 0 (if any). Introduce a second matrix

A1(z) =

(
1 z−zk

zkγketΦ(zk)

− zkγketΦ(zk)

z−zk 0

)
[P (z)]−σ3 , |z − zk| < δ,

for zk ∈ (−1, 0), and continue its definition in the interior of T∗k by the symmetry
condition

A1(z) = σ1A1(z−1)σ1, |z−1 − zk| < δ.

At all other points of C away from the curves Tk ∪ T∗k, zk ∈ (−1, 0), define A1(z)
by A1(z) = [P (z)]−σ3 . Since the Blaschke product satisfies P (z−1) = P−1(z) we
have A1(z−1) = σ1A1(z)σ1 everywhere. Now conjugate the vector mhol by setting

mini(z) = mhol(z)A1(z), z ∈ C.

Then the vector mini(z) is a holomorphic function in

C \ {T ∪ I ∪ I∗ ∪ Tδ}, Tδ :=

N⋃
j=1

Tj ∪ T∗j ,
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and solves the jump problem mini
+ (z) = mini

− (z)B(z), z ∈ Tδ, in neighborhoods of
the discrete spectrum, where (cf. [14])

(2.12) B(z) =



(
1 (z−zk)P 2(z)

zkγketΦ(zk)

0 1

)
, for z ∈ Tk, zk ∈ (−1, 0),

σ1B(z−1)σ1, for z ∈ T∗k, zk ∈ (−1, 0),

[P (z)]σ3A(z)[P (z)]−σ3 , for z ∈ Tk ∪ T∗k, zk ∈ (0, 1).

We observe that the matrix B(z) respects the symmetry property and

‖B(z)− I‖ ≤ Ce−t| infk Re Φ(zk)|, z ∈ Tδ, 0 < ξ < 1.

Here the matrix norm is to be understood as the maximum of the absolute value
of its elements.

Consider the contour Γ = T ∪ I ∪ I∗ ∪ Tδ, where the unit circle T is oriented
counterclockwise and the intervals I, I∗ are oriented towards the center of the
circle. Continue the function (2.3) to I∗ by χ(z) = −χ(z−1). Then the following
proposition is valid (cf. [5], [14]).

Proposition 2.3. Suppose that the initial data of the Cauchy problem (1.1)–(1.3),
satisfy (1.6). Let {R(z), |z| = 1;χ(z), z ∈ I; (zj , γj), 1 ≤ j ≤ N} be the right
scattering data of the operator H(0). Suppose that the operator has no resonances
at the spectral edges b − 2a, b + 2a. Let ξ = n

t ∈ (0, 1). Then the vector-valued

function mini(z) = mini(z, n, t), connected with the initial function (2.5) by

mini(z) = m(z)[P (z)]−σ3 , as z ∈ {z : |z±1 − zj | > δ, 1 ≤ j ≤ N},

is the unique solution of the following vector Riemann–Hilbert problem: Find a
vector-valued function mini(z) which is holomorphic away from Γ, continuous up to
the boundary, and satisfies:

I. The jump condition mini
+ (z) = mini

− (z)v(z), where

v(z) =



(
0 −P 2(z)R(z)e−2tΦ(z)

P−2(z)R(z)e2tΦ(z) 1

)
, z ∈ T,(

1 0
P−2(z)χ(z)e2tΦ(z) 1

)
, z ∈ I,(

1 P 2(z)χ(z)e−2tΦ(z)

0 1

)
, z ∈ I∗,

B(z), z ∈ Tδ.

Here the phase function Φ(z) = Φ(z, n/t) is given by (2.10), the matrix B(z)
by (2.12), the function P (z) by (2.11), and χ(z) by (2.3).

II. The symmetry condition mini(z−1) = mini(z)σ1.
III. The normalization condition

(2.13) mini(0) = (mini
1 ,mini

2 ), mini
1 ·mini

2 = 1, mini
1 > 0.

Remark 2.4. We assume that the points b− 2a and b+ 2a are non-resonant. This
means that the initial vector function m has continuous limits on I, I∗ and that
χ(z) is bounded there (otherwise T (z) ∼ (z − qj)−1/2 and both m and the jump
matrix have singularities). When ξ ∈ (0, 1) we have I ⊂ {z : Re Φ(z) = Φ(z) < 0}.
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Moreover, the matrix v(z) satisfies the symmetry property v(z) = σ1v(z−1)σ1 on I
and I∗. It also admits the estimate

‖v(z)− I‖L∞(I∪I∗) ≤ Ce−t|Φ(q1)|.

We omit the proof of Proposition 2.3 which is essentially the same as in [5, 14].
Note that the normalization condition mini

1 > 0 holds since it holds for the initial
function m and by definition, P (0) > 0. Uniqueness of the solution can be proved
as in [1].

3. Reduction to the model problem

In this section we perform three conjugation-deformation steps which reduce the
RH problem I–III to a simple jump problem on an arc of the circle with a constant
jump matrix, plus jump matrices which are small with respect to t. The jump
problem with the constant matrix can be solved explicitly. Note that the property
|R(z)| = 1 for z ∈ T does not allow us to apply a standard lower-upper factorization
of the jump matrices on an arc of T and subsequent ”lens” machinery near this arc
(see [14]). This is why we first need to find a suitable g-function ([6]).

Step 1. In this step we replace the phase function by a function with “better”
properties. The g-function has the same asymptotics (up to a constant term) as
Φ(z) for z → 0 and z → ∞ and the same oddness property g(z−1) = −g(z). In
addition, it has the convenient property that the curves separating the domains
with different signs of Re g(z) cross at points z0(ξ) ∈ T and z0(ξ), where g(z0) =
g(z0) = 0. A second helpful property of the g-function is that it has a jump along
the arc connecting z0 and z0 which satisfies g+(z) = −g−(z) > 0. This simplifies
further transformations, because with this property and Lemma 2.2 we do not need
the lens machinery around this arc. Note that the point z0 does not coincide with
the stationary phase point of Φ. Recall that for ξ ∈ (0, 1), the curves Re Φ(z) = 0

intersect at the symmetric points −ξ±
√
ξ2 − 1 ∈ T, which are the stationary points

of Φ. That is, the stationary phase point corresponds to the angle φ0 ∈ (0, π) where
cosφ0 = −ξ. Set

(3.1) z0 = eiθ0 , where cos θ0 = 1− 2ξ, θ0 ∈ (0, π).

Introduce

(3.2) g(z) =
1

2

∫ z

z0

√(
1− 1

sz0

)(
1− z0

s

)
(1 + s)

ds

s
,

where
√
s > 0 for s > 0, and the cut of the square root in (3.2) is taken between

the points z0 and z0 along the arc

Σ = {z ∈ T : Re z ≤ Re z0 = cos θ0}.

We orient this arc in the same way as T, i.e., from z0 to z0.

Lemma 3.1. The function g(z) satisfies the following properties:

(a) Φ(z)− g(z) = −K(ξ) ∈ R as z →∞;
(b) g(z0) = 0;
(c) g(z−1) = −g(z) as z ∈ C \ Σ;
(d) It has a jump along the arc Σ with g+(z) = −g−(z) > 0 as z 6= z±1

0 ;
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(e) In a vicinity of z0,

g(z) = C(θ0)(z − z0)3/2ei(π4−
3θ0
2 )(1 + o(1)), C(θ0) > 0.

In particular, g(z) = C(θ0)(|z − z0|)3/2(1 + o(1)) as z ∈ Σ.

Proof. We first prove that our choice of z0 yields Φ(z)− g(z) = O(1) as z →∞. To
match the asymptotics of g(z) and Φ(z) in (2.10) we compute

d

dz
g(z) =

1

2

√(
1− 1

zz0

)(
1− z0

z

)1 + z

z
=

1

2

(
1− 1

2zz0
− z0

2z
+

1

z

)
+O

( 1

z2

)
,

as z →∞, and hence

g(z) =
z

2
+

1

2

(
1− z0 + z−1

0

2

)
log z +O(1).

Now choose
z0 + z−1

0

2
= 1− 2ξ,

which implies that cos θ0 = 1 − 2ξ as desired. To prove property (b), substitute
s = eiθ and z0 = eiθ0 in (3.2), then

g(z0) = i

∫ 2π−θ0

θ0

√
(1− e−i(θ0+θ))(eiθ − eiθ0)

e
iθ
2 + e−

iθ
2

2
dθ

= i
√

2

∫ 2π−θ0

θ0

√
cos θ − cos θ0 cos θ2dθ.

For θ ∈ [θ0, 2π − θ0], we have that f(θ) = cos θ0 − cos θ > 0 and f is even with
respect to α, f(π − α) = f(π + α). Moreover, cos(π+α

2 ) is odd with respect to α,

cos(π−α2 ) = − cos(π+α
2 ). Hence the substitution θ = π+α with −π+θ0 ≤ α < π−θ0

yields

g(z0) =
√

2

∫ π−θ0

θ0−π

√
f(π + α) cos(π+α

2 )dα = 0.

Now it is straightforward to see (c), because the integrand can be represented as

(3.3)
d

ds
g(s) =

1

s

√
s+ s−1

2
− z0 + z−1

0

2

√
s+ s−1

2
+ 1 =:

h(s)

s
.

Since h(s−1) = h(s), one obtains by replacing s = t−1

g(z−1) =

∫ z−1

z0

h(s)ds

s
= −

∫ z

z0

h(t)dt

t
= −

∫ z

z0

h(t)dt

t
− g(z0) = −g(z).

For property (d), note that due to their equal asymptotical behaviour, the signature
table for g as z → 0 or z →∞ is the same as the signature table for Φ (see Fig. 2).
The line T\Σ corresponds to Re g = 0. Indeed, if z1 = eiθ1 and Re z1 > Re z0, then

g(z1) = i
√

2

∫ θ1

θ0

√
cos θ − cos θ0 cos( θ2 )dθ ∈ iR.

The function g(z) has a jump along the contour Σ, but the limiting values are real
(compare with the proof of (b)). Thus Re g+ = g+ > 0 (because this limit is taken
from the domain where Re g > 0). Respectively, Re g− = g− < 0 and g+ = −g−.
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Now we are ready to finish the proof of property (a). Since g(z) satisfies (c) we
have g(1) = 0. By use of (3.3) and (2.2), and taking into account that

dz

z
= − dλ√

λ2 − 1
, Φ(z) = −

∫ λ(z)

1

x+ ξ√
x2 − 1

dx,

we obtain for z → +0, that is when
√
λ2 − 1 > 0 as λ > 1, the asymptotic behaviour

(3.4) Φ(z)− g(z) = K(ξ) + k(ξ)z +O(z2), as z → 0,

where

(3.5) K(ξ) =

∫ ∞
1

√
(x− 1 + 2ξ)(x+ 1)− x− ξ√

x2 − 1
dx ∈ R, k(ξ) = 1− 2ξ + ξ2.

Differentiating (3.5) we also get

(3.6)
d

dξ
K(ξ) = − log ξ.

To prove (e) we decompose (3.2) in a vicinity of z0 and integrate. Since arg(z −
z0) = (− 3π

2 + θ0)(1 + o(1)) for z ∈ Σ in a small vicinity of z0, then arg(z− z0)3/2 +
π
4 −

3θ0
2 = −2π(1 + o(1)), which implies the second claim of (e). �

The signature table for g(z) is given in Fig. 2. With this description of the g-
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Figure 2. Signature table for g(z).

function we introduce the function d(z) = et(Φ(z)−g(z)). It satisfies the conditions
of Lemma 2.2. Let mini(z) be the solution of the RH problem I–III. Set

m(1)(z) = mini(z)[d(z)]−σ3 ,

then this vector solves the jump problem m
(1)
+ (z) = m

(1)
− (z)v(1)(z) with

v(1)(z) =



(
0 −R(z)e−2tg(z)

R(z)e2tg(z) 1

)
, z ∈ T \ Σ,(

0 −R(z)
R(z) e−2tg+(z)

)
, z ∈ Σ,

E(z), z ∈ Ξ,
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where the following notations are introduced,

R(z) := R(z)P−2(z), Ξ := I ∪ I∗ ∪ Tδ,

E(z) :=



(
1 0

P−2(z)χ(z)e2tg(z) 1

)
, z ∈ I,

σ1E(z−1)σ1, z ∈ I∗,
[d(z)]σ3B(z)[d(z)]−σ3 , z ∈ Tδ.

(3.7)

The matrix B(z) was defined in (2.12). Note that in the non-resonant case for
z = q1 and z = q2

sup
z∈I∪I∗

‖E(z)− I‖ = ‖E(z)− I‖L∞(I∪I∗) ≤ Ce−t|g(q1)|.

To obtain an analogous estimate on Tδ, we now have to adjust the value for δ.
Denote

inf
k
|Φ(zk)| = J > 0, k = 1, . . . , N.

By continuity of the difference g(z)− Φ(z), choose δ > 0 so small that

sup
k

sup
z∈Tk

|g(z)− Φ(z)| < J

4
.

Then
sup
z∈Tδ
‖E(z)− I‖ = ‖E(z)− I‖L∞(Tδ) ≤ Ce−

tJ
2 .

Step 2: On T \ Σ, the jump matrix can be factorized using the standard upper-
lower factorization ([5, 14]). Let C be a contour close to the complementary arc
T\Σ with endpoints z0 and z0 and clockwise orientation. Let C∗ be its image under
the map z 7→ z−1, oriented counterclockwise.
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Figure 3. Contour deformation of Step 2.

Denote the regions adjacent to these contours by Ω and Ω∗ as in Fig. 3, and set

W (z) :=



(
1 0

−R(z)e2tg(z) 1

)
, z ∈ Ω,

σ1W (z−1)σ1, z ∈ Ω∗,

I, z ∈ C \ (Ω ∪ Ω∗).
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Redefine m(1) inside Ω and Ω∗ by m(2)(z) = m(1)(z)W (z). The new vector does

not have a jump along the arc T \ Σ, and satisfies m
(2)
+ (z) = m

(2)
− (z)v(2)(z) with

v(2)(z) =

{
v(1)(z), z ∈ Σ ∪ Ξ,

W−1(z), z ∈ C ∪ C∗.

The symmetry and normalization conditions are preserved in this deformation step.

Before we perform the next conjugation step, we have to study in detail the
solution of the following scalar conjugation problem: find a holomorphic function
d̃(z) on C \ Σ, such that

d̃+(z)d̃−(z) = R(z)R−1(−1), z ∈ Σ,(3.8)

(i) d̃(z−1) = d̃−1(z), z ∈ C \ Σ; (ii) d̃(∞) ∈ R.(3.9)

Remark 3.2. As for any multiplicative scalar jump problem with nonvanishing
jump function on a contour in C, one can find its solution via the associated additive
jump problem and the usual Cauchy integral. However, the representation via the
usual Cauchy integral requires a prescribed (and known) behavior of the solutions
at∞. On the other hand, this representation cannot provide (3.9), unless the jump

functions are not even on Σ. For example, condition (3.9), (i), implies log d̃(1) = 0,
which cannot be obtained by the usual Cauchy integral. That is why we use the
Cauchy integral with kernel vanishing z = 1,

(3.10) Ω(z, s) =
1

2

(
s+ z

s− z
− s+ 1

s− 1

)
.

In order to solve the conjugation problem (3.8)–(3.9), we first solve an auxiliary
conjugation problem: find a holomorphic function F (z) in C\Σ, bounded as z →∞
and such that

(3.11) F+(z) = −F−(z), z ∈ Σ; F (z−1) = −F (z), z ∈ C \ Σ; F (∞) ∈ R.

Since there are two associated additive jump problems, logF+(z) = logF−(z)± iπ,
z ∈ Σ, and since

iπ

2πi

∫ z0

z0

Ω(z, s)
ds

s
= log

(
z0z − 1

z0 − z

)1/2

,

the solution of the jump problem in (3.11) can be given by

F (z) =
1

2i

((
z0z − 1

z0 − z

)1/2

−
(
z0 − z
z0z − 1

)1/2
)
.

The symmetry F (z−1) = −F (z) is evident from here. It turns out that this symme-
try implies that F+(s) is an even function for s ∈ Σ. Moreover, F+(s) is real-valued
as s = eiθ and θ 6= θ0,
(3.12)

F+(eiθ) =
1

2i

((
sin θ0+θ

2

sin θ0−θ
2

)1/2

−

(
sin θ0−θ

2

sin θ0+θ
2

)1/2)
=
√

2
sin θ

2 cos θ02√
cos θ0 − cos θ

∈ R,

because cos θ < cos θ0 on the arc Σ. On the other hand,

(3.13) F (z) =
1

2i

(z0 + 1)(z − 1)√
(z0 − z)(z0z − 1)

= cos θ02
(z − 1)√

(z − z0)(z − z0)
,
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and in particular, F (1) = 0 and F (∞) = −F (0) = cos θ02 ∈ R.

Now assume that d̃(z) solves (3.8)–(3.9) and introduce the function f(z) :=

F (z) log d̃(z). Then (3.8), (3.9), and (3.11) imply that this function should solve
the jump problem

(3.14) f+(z) = f−(z) + h(z), z ∈ Σ, where h(z) := F+(z) log R(z)
R(−1) .

Moreover, f(z−1) = f(z) should hold for z ∈ C\Σ and f(∞) ∈ R. The jump (3.14)
can be satisfied by

(3.15) f(z) =
1

4πi

∫ z0

z0

h(s)

(
s+ z

s− z
− s+ 1

s− 1

)
ds

s
.

One has to check that the other two conditions are satisfied too. The function
log R(z)
R(−1) is an odd function. Indeed, recall that the reflection coefficient R(z) is

a continuous function which satisfies R(z−1) = R−1(z), |R(z)| = 1, and so does
P 2(z), which implies R(z−1) = R−1(z). Since F+(z) is an even function, h(z) is
an odd function on Σ, and the required evenness of f can be directly verified from
(3.15).

To check that f(∞) ∈ R recall that |R(z)| = 1 yields h(z) ∈ iR. When z → ∞
the first integrand in (3.15) vanishes due to oddness of h. For the second we obtain

f(∞) = − 1

4πi

∫ z0

z0

h(s)
s+ 1

s− 1

ds

s
= − 1

4πi

∫ 2π−θ0

θ0

h(θ) cot( θ2 )dθ ∈ R.

Since 1 /∈ Σ, the function f(z) is holomorphic in a vicinity of z = 1 and has a zero at
least of first order there. Hence F−1(z)f(z) is well defined, it satisfies the required

additive jump problem for log d̃(z), the symmetry F−1(z)f(z) = −F−1(z−1)f(z−1),

and F−1(∞)f(∞) ∈ R. Thus, d̃(z) = eF
−1(z)f(z) solves the conjugation problem

(3.8)–(3.9) and combining (3.10), (3.12)–(3.15) we obtain

(3.16) d̃(z) = exp

(
i
√

(z − z0)(z − z0)√
2π(z − 1)

∫ 2π−θ0

θ0

arg
R(eiθ)

R(−1)

Ω(z, eiθ) sin θ
2√

cos θ0 − cos θ
dθ

)
.

Moreover, taking into account that

Ω(z, s)

z − 1
=

2s

(s− z)(s− 1)
,

and using the first equality in (3.13) we obtain another representation for d̃(z),

(3.17) d̃(z) = exp

(√
(z0 − z)(z0z − 1)

2πi

∫ z0

z0

log R(s)
R(−1) ds

[
√

(z0 − s)(z0s− 1)]+(s− z)

)
.

Lemma 3.3. The solution of the conjugation problem (3.8)–(3.9) given by (3.16)
has the following asymptotic behavior as z →∞

(3.18) d̃(z) = eA(ξ)+
B(ξ)
z +O(z−2),
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where

A(ξ) =
1√
2π

∫ 2π−θ0

θ0

√
cos θ0 − cos θ

2u′(θ) sin θ
2 − u(θ) cos θ2

4 sin2 θ
2

dθ,

(3.19)

B(ξ) = 2ξA(ξ)− 1√
2π

∫ 2π−θ0

θ0

√
cos θ0 − cos θ

(
2u′(θ) sin θ

2 + u(θ) cos θ2
)
dθ,

(3.20)

and u(θ) := arg
(
R(eiθ)
R(−1)

)
.

Remark 3.4. The function R, which is in fact a function of the spectral parameter
λ, depends on θ via R(cos θ), therefore the derivative of u(θ) is a real valued
function.

Proof. The function u(θ) is an odd function of θ on the interval of integration in
the sense that u(π2 − α) = −u(π2 + α). In the same sense, sin θ

2 (cos θ0 − cos θ)−1/2

is an even function. Taking this into account as well as (3.10) we have for z →∞

i
u(θ)Ω(z, eiθ) sin θ

2√
cos θ0 − cos θ

= −i

(
eiθ

eiθ − 1
+

eiθ

z

)
u(θ) sin θ

2√
cos θ0 − cos θ

+O(z−2)

=

(
− u(θ)

2 sin θ
2

+
2u(θ) sin θ

2

z

)
d

dθ

√
cos θ0 − cos θ − i

u(θ) sin θ
2

2
√

cos θ0 − cos θ
+
ũ(θ)

z
+O(z−2),

where

ũ(θ) =
−iu(θ) cos θ sin θ

2√
cos θ0 − cos θ

is an odd function, ũ(π2 − α) = −ũ(π2 + α). Integration by parts then yields
(3.21)

i

∫ 2π−θ0

θ0

u(θ)Ω(z, eiθ) sin θ
2√

cos θ0 − cos θ
dθ =

∫ 2π−θ0

θ0

√
cos θ0 − cos θ

d

dθ

(
u(θ)

2 sin θ
2

−
2u(θ) sin θ

2

z

)
dθ

plus the term of order z−2. On the other hand,√
(z − z0)(z − z0)√

2π(z − 1)
=

1√
2π

(
1 +

1− cos θ0

z

)
+O(z−2), z →∞.

Combining this with (3.21) yields (3.19) and (3.20). �

Lemma 3.5. The function d̃(z) satisfying (3.8)–(3.9) has the following asymptotic
behavior in a vicinity of z0,
(3.22)

d̃−2(z)R(z) = R(−1) +O(
√
z − z0), z /∈ Σ,

d̃+(z)

d̃−(z)
= 1 +O(

√
z − z0), z ∈ Σ.

Proof. We will use the representation (3.17). To simplify notation set

r(s) = log(R(s)R−1(−1)), q(s, z0) =
√

(z0 − z)(z0z − 1).

Then

log d̃(z) =
q(z, z0)

2πi

∫ z0

z0

r(s)ds

[q(s, z0)]+(s− z)
= J1(z) + J2(z),
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where

J1(z) =
q(z, z0)

2πi

∫ z0

z0

(r(s)− r(z0))ds

[q(s, z0)]+(s− z)
, J2(z) = r(z0)

q(z, z0)

2πi

∫ z0

z0

ds

[q(s, z0)]+(s− z)
.

Since r(s)− r(z0) ∼ (z− z0), the integral in J1(z) is Hölder continuous in a vicinity
of z0. Therefore,
(3.23)

J1(z) = I(z0)
√
z − z0, I(z0) =

1− z2
0

2πi

∫ z0

z0

(logR(s)− logR(z0)) ds

[
√

(z0 − s)(z0s− 1)]+(s− z0)
.

On the other hand, since

1

2[q(z, z0)]+
=

1

2[q(z, z0)]−
+

1

[q(z, z0)]+
, z ∈ Σ,

and (q(z, z0))−1 → 0 as z →∞, we have

1

2q(z, z0)
=

1

2πi

∫ z0

z0

ds

[q(s, z0)]+(s− z)
,

and J2 = r(z0)
2 . Therefore,

log d̃(z) =
1

2
log
R(z0)

R(−1)
+ I(z0)

√
z − z0,

and (3.22) follows from (3.23) in a straightforward manner. �

Step 3: Define m(3)(z) = m(2)(z)[d̃(z)]−σ3 , then our previous considerations lead
to the following statement.

Theorem 3.6. The vector function m(3)(z) is the unique solution of the following
RH problem: find a holomorphic vector function m̆(z) in C\ (Σ∪C ∪C∗∪Ξ), which
is continuous up to the boundary and has the following properties:

• It solves the jump problem m̆+(z) = m̆−(z)v̆(z) with

(3.24) v̆(z) =



(
0 −R(−1)

R(−1) d̃+(z)

d̃−(z)
e−2tg+(z)

)
, z ∈ Σ,(

1 0

−d̃−2(z)R(z)e2tg(z) 1

)
, z ∈ C,(

1 −d̃2(z)R(z)e−2tg(z)

0 1

)
, z ∈ C∗,

Ĕ(z) := [d̃(z)]σ3E(z)[d̃(z)]−σ3 , z ∈ Ξ,

where the matrix Ĕ(z) is defined by (3.7), (2.12), (3.16), and satisfies

‖Ĕ(z)− I‖L∞(Ξ) ≤ Ce−tJ̆ , J̆ = min

{
|g(q1)|, min

k=1,...,N
|4−1Φ(zk)|

}
;

• m̆(z) satisfies symmetry and normalization conditions like (2.8) and (2.13);
moreover, v̆(z) has the symmetry property (2.7);

• For small z the vector function m in (2.5) and m̆(z) are connected by

(3.25) m̆(z) = m(z)[q(z)]−σ3 , q(z) = d̃(z)P (z)et(Φ(z)−g(z)).
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4. The model problem solution

Denote by Σ̆ = Σ∪C∪C∗∪Ξ the jump contour for m̆, and let O and O∗ be small
and symmetric (with respect to the map z 7→ z−1) vicinities of z0 and z0, which are
not necessarily circles. Denote by Σ1 = Σ ∩ O, Σ2 = C ∩ O, Σ3 = (C∗)−1 ∩ O the

segments of Σ̆ in O and set ΣO = Σ1 ∪Σ2 ∪Σ3. Let Σ∗O be the symmetric contour
in a neighborhood of z0. Both contours ΣO and Σ∗O inherit the orientation of the

respective parts of Σ̆, except for C∗, where we reverse the orientation. Evidently,

‖v̆(z)− vmod(z)‖L∞(Σ̆\(ΣO∪Σ∗O)) ≤ Ce−tU ,

where

U = min{J̆ , inf
z∈∂O

|g(z)|} > 0,

and

vmod(z) =


(

0 −R(−1)

R(−1) 0

)
, z ∈ Σ

I, z ∈ Σ̆ \ Σ.

Thus, in a first order of approximation one can assume that the solution of the
RHP (3.24) can be approximated by the solution of the following model RHP: find
a holomorphic vector function in C \ Σ satisfying the jump condition

(4.1) mmod
+ (z) = mmod

− (z)vmod(z), z ∈ Σ,

the symmetry condition mmod(z−1) = mmod(z)σ1, and the normalization condition
mmod

1 (0) > 0, mmod
1 (0)mmod

2 (0) = 1.

Lemma 4.1. The solution of this vector RH problem is unique.

The proof of this Lemma is analogous to the proof of the uniqueness of the vector
model problem for the KdV rarefaction problem.

For our further investigation we will also need a matrix solution Mmod(z) =
Mmod(z, n, t) of the matrix RHP: find a holomorphic matrix function Mmod(z) on
C \ Σ satisfying the following jump and symmetry conditions,

Mmod
+ (z) = Mmod

− (z)vmod(z), z ∈ Σ; Mmod(z−1) = σ1M
mod(z)σ1.

We find a solution of the matrix problem following [12, 1]. Consider the non-
resonant case, that is R(−1) = −1. Using

vmod(z) =

(
0 1
−1 0

)
=

(
1 1
i −i

)
iσ3

(
1 1
i −i

)−1

,

we first look for a holomorphic solution of the jump problemM0
+ = iM0

−σ3 satisfying
the symmetry condition as above. Using (3.10) we get

M0(z) =

(
β(z) 0

0 β−1(z)

)
,

with

β(z) =

(
z0z − 1

z0 − z

)1/4

,
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where the branch of the fourth root is chosen with the cut along the negative half
axis and 11/4 = 1. Since β(z−1) = β−1(z), then we have the required symmetry.
Concerning the original matrix solution Mmod(z), this asks for the representation

(4.2) Mmod(z) =

 β(z)+β−1(z)
2

β(z)−β−1(z)
2i

−β(z)−β−1(z)
2i

β(z)+β−1(z)
2

 ,

and the required symmetry condition is also fulfilled. The vector solution of the
model problem is unique. Evidently, if we take mmod(z) = (α, α)Mmod(z) for some
α, then (4.1) and (2.8) are fulfilled. We have to choose a suitable α to satisfy the

normalization condition. Since β(∞) = ei
θ0−π

4 then

Mmod(∞) =

(
cos θ0−π4 sin θ0−π

4

− sin θ0−π
4 cos θ0−π4

)
.

The normalization condition for mmod(∞) implies

α2
(
cos2 θ0−π

4 − sin2 θ0−π
4

)
α2 cos θ0−π2 = α2 sin θ0

2 = 1.

Thus,

(4.3) mmod(z) = α
(
1, 1

)
Mmod(z), α = α(ξ) =

(
sin θ0

2

)−1/2
.

In the resonant case the matrix solution is represented by the same formula (4.2),
but with β−1(z) instead of β(z) and vice versa. In summary, we have the following

Lemma 4.2. The solution of the vector resp. matrix model RHP, mmod(z) resp.

Mmod(z), is given by (4.3) resp. (4.2), where β(z) =
(
z0z−1
z0−z

)1/4
in the non-resonant

case and β(z) =
(
z0−z
z0z−1

)1/4
in the resonant case.

Lemma 4.3. The asymptotic behavior of mmod
1 (z) as z → 0 is given by

(4.4) mmod
1 (z) =

ξ1/4

(1 + (1− ξ)1/2)1/2

(
1 +

(
1− ξ + (1− ξ)1/2

)
z
)

+O(z2)

in the non-resonant case. In the resonant case,

mmod
1 (z) =

(1 + (1− ξ)1/2)1/2

ξ1/4

(
1 +

(
1− ξ − (1− ξ)1/2

)
z
)

+O(z2).

Proof. Consider first the non-resonant case. Since

β(z) = ei
π−θ0

4

(
1− i sin θ0

2
z
)

+O(z2), z → 0,

then
β(z) + β−1(z)

2
= cos π−θ04 + sin π−θ0

4

sin θ0

2
z +O(z2),

β(z)− β−1(z)

2i
= sin π−θ0

4 − cos π−θ04

sin θ0

2
z +O(z2).

By (4.3),

mmod
1 (z) =

1√
sin θ0

2

(
cos π−θ04 − sin π−θ0

4 +
(

cos π−θ04 + sin π−θ0
4

) sin θ0

2
z
)

+O(z2)

=

√
2 sin θ0

4√
sin θ0

2

+

√
2 cos θ04√

sin θ0
2

sin θ0

2
z +O(z2) =

√
tan θ0

4 +
sin θ0 z

2
√

tan θ0
4

+O(z2).
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Next,

tan θ0
4 =

1− cos θ02
sin θ0

2

=

√
2−
√

1 + cos θ0√
1− cos θ0

=
1−
√

1− ξ√
ξ

=

√
ξ

1 +
√

1− ξ
,

since cos θ0 = 1−2ξ. Respectively, sin θ0 = 2
√
ξ − ξ2, from which (4.4) follows. The

resonant case follows from the same computation using β−1(z) instead of β(z). �

5. Asymptotics in the region ξ ∈ (0, 1).

The structure of the matrix solution (4.2) and the jump matrix (3.24) as well
as the results of Lemmas 3.5, 3.1, (e), allow us to conclude that the solution of
the parametrix problem (which has a local character) can be constructed as in [1]
using [14], Appendix B (in particular the solution can be given in terms of Airy
functions) Consequently, as z → 0 (cf. [1])

m(3)(z, ξ) = m̆(z) = mmod(z, ξ) +
f(z, ξ, t)

t
, ξ ∈ I := [ε, 1− ε],

where the vector function f(z, ξ, t) is uniformly bounded with respect to z ∈ Dδ,
ξ ∈ I and t ∈ [T,∞). Here T > 0 is a sufficiently large number and Dδ is a circle
centered at 0 with radius δ < 1. Moreover, f(z, ξ, t) is differentiable with respect
to ξ and z, and the derivatives are also uniformly bounded in the sets mentioned
above. By (3.25) we will have for f = (f1, f2)

(5.1) m1(z) =

(
mmod

1 (z) +
f1(z, ξ, t)

t

)
d̃(z)P (z)et(Φ(z)−g(z)).

From (3.9), (3.18), (3.19), (3.20), (3.4), (3.5), and (2.11) it follows that

d̃(z) = e−A(ξ) (1−B(ξ)z) +O(z2), z → 0,

et(Φ(z)−g(z)) = etK(ξ) (1 + tk(ξ)z) +O(z2), z → 0,

P (z) =

(
1− 2z

∑
zj∈(−1,0)

√
λ2
j − 1

) ∏
zj∈(−1,0)

1

|zj |
+ o(z2).

Combining this with (4.4), (5.1), and f1(z, ξ, t) = f1(0, ξ, t) + zf
(1)
1 (0, ξ, t) +O(z2)

we get

(5.2) m1(z) = A(ξ)

{
1 + 2z

(
B(ξ) +

h3(ξ, t)

t

)
+O(z2) +

h2(ξ, t)

t

}
,

where

A(ξ, t) = etK(ξ)−A(ξ) ξ1/4

(1 + (1− ξ)1/2)1/2

∏
zj∈(−1,0)

1

|zj |

= S exp
(
tK(ξ)−A(ξ) +

1

4
log ξ − 1

2
log(1 + (1− ξ)1/2)

)
,

B(ξ, t) = −S1 +
tk(ξ)

2
− B(ξ)

2
+

1− ξ + (1− ξ)1/2

2
,

S =
∏

zj∈(−1,0)

1

|zj |
, S1 =

∑
zj∈(−1,0)

√
λ2
j − 1.
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The coefficients h2(ξ, t) and h3(ξ, t) given by

h2(ξ, t) = f1(0, ξ, t)
(1 + (1− ξ)1/2)1/2

ξ1/4
, h3(ξ, t) = f

(1)
1 (0, ξ, t)

(1 + (1− ξ)1/2)1/2

ξ1/4
,

and are bounded with respect to ξ ∈ I and t ≥ T , together with their derivatives
with respect to ξ. Comparing (5.2) with (2.6) implies the asymptotics

∞∏
j=n

2a(j, t) = A(ξ)
(

1 +
h2(ξ, t)

t

)
,

∞∑
m=n

b(m, t) = B(ξ) +
h3(ξ, t)

t
, ξ =

n

t
.

Set ξ̂ = n+1
t and note that ξ − ξ̂ = − 1

t . Then

2a(n, t) =
A(ξ)

A(ξ̂)
= e−K

′(ξ)+ 1
tL(ξ)+O(t−2),

where

L(ξ) =
−K ′′(ξ)

2
+A′(ξ)− 1

4ξ
− 1

4(1− ξ + (1− ξ)1/2)
,

and the prime denotes the derivative with respect to ξ. Analogously,

b(n, t) = B(ξ)−B(ξ̂) = −k
′(ξ)

2
+

1

t

(
−k
′′(ξ)

4
+
B′(ξ)

2
+

1

2
+

1

4(1− ξ)1/2

)
+O(t−2).

By (3.19) and (3.20)

A′(ξ) = − 1

4
√

2π

∫ 2π−θ0

θ0

2u′(θ) sin θ
2 − u(θ) cos θ2√

cos θ0 − cos θ sin2 θ
2

dθ,

B′(ξ) = 2ξA′(ξ) + 2A(ξ) +
1√
2π

∫ 2π−θ0

θ0

2u′(θ) sin θ
2 + u(θ) cos θ2√

cos θ0 − cos θ
dθ,(5.3)

with (recall that we consider the non-resonant case at z = −1)

(5.4) u(θ) = arg
(
R(eiθ) + 1

)
.

Taking into account (3.5) and (3.6) we get

a(n, t) =
ξ

2

(
1 +

L(ξ)

t
+O(t−2)

)
,

where

L(ξ) = − 1 + 2ξ + (1− ξ)1/2

4ξ(1− ξ + (1− ξ)1/2)
+A′(ξ).

Analogously, by (3.5)

b(n, t) = 1− ξ +
1

4t

(
(1− ξ)−1/2 + 2B′(ξ)

)
+O(t−2).

In summary, we proved the following

Theorem 5.1. Suppose that the initial operator H(0) associated with the sequences
{a(n, 0), b(n, 0)} has no resonance at the edges of spectrum −1, b − 2a, b + 2a. Let

R(z), z = λ −
√
λ2 − 1, be its right reflection coefficient and λj = 1

2 (zj + z−1
j ) its

eigenvalues. Let ε > 0 be an arbitrary small number. Then in the sector

εt ≤ n ≤ (1− εt)



20 I. EGOROVA, J. MICHOR, AND G. TESCHL

the following asymptotics are valid for the solution {a(n, t), b(n, t)} of the Toda
lattice as t→ +∞:

a(n, t) =
n

2t
− n

8t2

( √
1− n

t + 1 + 2n
t

n
t

(
1− n

t +
√

1− n
t

)(5.5)

+
1√
2π

∫ 2π−θ0

θ0

2u′(θ) sin θ
2 − u(θ) cos θ2√

1− 2n
t − cos θ sin2 θ

2

dθ

)
+O(t−2),

b(n, t) = 1− n

t
+

1

4t

(
1√

1− n
t

+ 2B′(nt )

)
+O(t−2),(5.6)

where the term O(t−2) is uniformly bounded with respect to n. The function B′(ξ)
is defined by (5.3), (3.20), (3.19), (5.4); θ0 = arccos(1− 2n

t ) ∈ (0, π) and

u(θ) = arg
(
R(eiθ)P−2(eiθ)− argR(eiπ)P−2(eiπ)

)
where P is defined in (2.11).

6. Discussion of the region −2at < n < 0.

To obtain the asymptotic of the solution in the region n
t ∈ (−2a, 0) we could

study an analogous RH problem connected with the left scattering data and the
variable ζ (cf. (2.2)). Instead of this extensive analysis let us consider the Toda
lattice associated with the functions

(6.1) â(n, t) =
1

2a
a(−n− 1, t

2a ), b̂(n, t) =
1

2a

(
b− b(−n, t

2a )
)
.

It is straightforward to check that â(n, t), b̂(n, t) satisfy the Toda equations (1.1)
associated with the initial profile

â(n, 0)→ 1

2a
, b̂(n, 0)→ b

2a
, as n→ −∞,

â(n, 0)→ 1

2
, b̂(n, 0)→ 0, as n→ +∞.

For this solution we obtain by our previous results in the region n
t ∈ (0, 1) that

(6.2) â(n, t) =
n

2t
+
f(n, t)

t
, b̂(n, t) = 1− n

t
+
g(n, t)

t
,

where f(n, t) (resp., g(n, t)) are the same as the second order terms in (5.5) (resp.,
(5.6)), but the function u corresponds to a new Jacobi operator (2.1) with coef-

ficients Ĥ ∼ {â(n, 0), b̂(n, 0)}. Set τ = t
2a and m = −n − 1. If n

t ∈ (0, 1), then
m
τ ∈ (−2a, 0). From (6.1) and (6.2) we get

a(m, τ) = 2aâ(n, t) =
2an

2t
+

2af(n, t)

t
=
−m− 1

2τ
+
f(−m− 1, 2aτ)

τ
,

b(m, τ) = b− 2ab̂(n+ 1, t) = b− 2a− m

τ
− g(−m− 1, 2aτ)

τ
.

An elementary analysis shows that the right reflection coefficient of Ĥ, given in
the variable ζ, is the same as the left reflection coefficient R1(ζ−1) of the initial
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operator H(0), and the discrete spectra of both operators are the same. In terms
of ζ we denote the eigenvalues by ζ1, . . . , ζN and set

P1(ζ) =
∏

ζj∈(0,1)

|ζj |
ζ − ζ−1

j

ζ − ζj
.

Note that P (z) corresponds to the eigenvalues λj of H(0), which satisfy λj < −1,
and P1(ζ) corresponds to λj > b+ 2a. Now set ζ = eiθ and

U(θ) = arg
(
R1(eiθ)P−2

1 (eiθ)−R1(1)P−2
1 (1)

)
, θ ∈ [−θ0, θ0].

Theorem 6.1. Let ε > 0 be an arbitrary small number. Suppose that the initial
operator H(0) has no resonances at the points −1, 1, b+2a, and let R1(ζ) be its left
reflection coefficient, λ−b = a(ζ+ζ−1). Then in the domain −(2a−ε)t ≤ n ≤ −εt
the following asymptotic is valid as t→ +∞ in the non-resonant case,

a(n, t) = −n+ 1

2t
− n+ 1

16at2


√

1 + n+1
2at + 1− n+1

at

n+1
2at

(
1 + n+1

2at +
√

1 + n+1
2at

)
− 1√

2π

∫ θ0

−θ0

2U ′(θ) sin θ
2 − U(θ) cos θ2√

1 + n+1
at − cos θ sin2 θ

2

dθ

+O(t−2),

b(n, t) = b− 2a− n

t
− 1

2t

(
1

2
√

1 + n+1
2at

+ B̃(nt )

)
+O(t−2),

where θ0 = arccos(1 + n+1
at ) ∈ (0, π) and

B̃(nt ) =
1√
2π

∫ θ0

−θ0

(
n+ 1

4at

2U ′(θ) sin θ
2 − U(θ) cos θ2√

1 + n+1
at − cos θ sin2 θ

2

+
2U ′(θ) sin θ

2 + U(θ) cos θ2√
1 + n+1

at − cos θ

+

√
1 +

n+ 1

at
− cos θ

2U ′(θ) sin θ
2 − U(θ) cos θ2

2 sin2 θ
2

)
dθ.
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