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We discuss an asymptotical behavior of the rarefaction wave for the KdV
equation in the region behind the wave front. The first and the second
terms of the asymptotical expansion for such a solution with respect to large
time were derived without detailed analysis in [1]. In the present work, we
correct the formula for the second term by investigating the corresponding
parametrix problem. We also study an influence of the resonance on the
asymptotical behavior of the solution.
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1. Introduction

This paper is a continuation of [1], where the long-time asymptotics of the
Cauchy problem solution for the Korteweg–de Vries (KdV) equation

qt(x, t) = 6q(x, t)qx(x, t)− qxxx(x, t), (x, t) ∈ R× R+, (1)

with steplike initial data q(x, 0) = q0(x),{
q0(x)→ 0, as x→ +∞,
q0(x)→ c2, as x→ −∞,

(2)
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was studied. The initial profile of type (2) corresponds to the rarefaction wave. Its
asymptotics is well understood on a physical level of rigor (see [10,12,15]). In [1],
the asymptotics of the solution for (1), (2) is studied mathematically rigorously for
the regions ahead of the back wave front by using the nonlinear steepest descent
method [6]. As for the region behind the back wave front, in [1], the respective
Riemann–Hilbert (RH) problem was reduced to a model RH problem in the
nonresonant case. The structure of the transformations which were performed
to get this model problem led to an assumption that the solution of (1), (2)
should be asymptotically close to the respective background constant c2, plus a
decaying “radiation part” of order O(t−1/2). Moreover, for this second term of
the asymptotical expansion a formula was given which had the same form as for
the decaying initial data, that is, when q0(x)→ 0 as x→ ±∞.

The objectives of the present paper are: (a) to justify the asymptotical expan-
sion for the solution of (1), (2) with respect to large t in the region x < (−6c2−ε)t;
(b) to check a possible influence of the resonance on the asymptotical expansion;
(c) to clarify the formula for the second term.

We will assume that the initial profile (2) satisfies the condition∫ +∞

0
e(c+κ)x(|q0(x)|+ |q0(−x)−c2| dx <∞, x4q(i)(x) ∈ L1(R), i = 1, . . . , 8, (3)

where κ > 0 is a small number. Under this condition the solution of the Cauchy
problem (1), (2) exists in the classical sense and it is unique in the domain
(x, t) ∈ R× [0, T ] for any T > 0. Moreover, for each t, it tends to the background
constants 0, c2 with at least the first finite moment of perturbation (cf. [8]). Note
that condition (3) is more restrictive than the decay condition from [1]. In fact,
as we will see later, condition (3) appears as a natural restriction in the domain
behind the back wave front in the resonant case. We prove the following:

Theorem 1. Let q(x, t) be the solution of the Cauchy problem (1)–(3). Then
for arbitrary small ε > 0 in the domain x < (−6c2− ε)t the following asymptotics
is valid as t→∞:

q(x, t) = c2 +

√
4ν(a)a

3t
sin(16ta3 − ν(a) log(192ta3) + ∆(a)) + o(t−γ) (4)

for some 1/2 < γ < 1. Here

a =

√
−c

2

2
− x

12t
, ν(a) = − 1

2π
log
(
1− |R(a)|2

)
, (5)

∆(a) =
π

4
+ arg(R(a)) + arg(Γ(iν(a))) +

1

π

∫
R\[−a,a]

log

(
1− |R(s)|2

1− |R(a)|2

)
ds

s− a
,

Γ(z) is the Gamma-function and R(k) is the left reflection coefficient of the initial
profile (3).
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Note that the radiation part of formula (4) given by the left scattering data
looks very similar to that of the decaying case [9]. However, the investigation of
Riemann–Hilbert problems associated with the steplike initial profile has its own
distinctive features.

To simplify the presentation we changed notations used in [1] and omitted
some indices.

2. Statement of the RH Problem

First briefly recall some facts from the scattering theory of the Schrödinger
operator with steplike potentials (see [4, 5, 7]). Let q(x, t) be the solution of
the Cauchy problem (1)–(3). Consider the underlying spectral problem for the

operator H(t) := − d2

dx2 + q(x, t) on the whole axis:

(H(t)f)(x) = λf(x), x ∈ R, (6)

where λ ∈ C is the spectral parameter. As is known, the spectrum of H(t) consists
of an absolutely continuous part R+ and a finite number of negative eigenvalues
−κ2

1 < · · · < −κ2
N < 0. In turn, the continuous spectrum consists of a part [0, c2]

of multiplicity one and a part [c2,∞) of multiplicity two. Instead of λ in equation
(6) another spectral parameter k =

√
λ− c2 is used for sake of convenience. Here

for the square root we choose the standard branch such that the function k =
k(λ) is a bijection between the domains C\R+ and D := C+\(0, ic]. The solutions
of equation (6) will be considered as the functions of the parameter k ∈ D = D∪
∂D. In particular, equation (6) has two Jost solutions φ(k, x, t) and φ1(k, x, t)
satisfying the conditions

lim
x→+∞

e−i
√
k2+c2xφ1(k, x, t) = lim

x→−∞
eikxφ(k, x, t) = 1, k ∈ D.

The Jost solutions satisfy the scattering relation

T (k, t)φ1(k, x, t) = φ(k, x, t) +R(k, t)φ(k, x, t), k ∈ R,

where T (k, t), R(k, t) are the left transmission and reflection coefficients. For the
transmission coefficient, the following formula is valid: T (k, t) = 2ikW−1(k, t),
whereW (k, t) := 〈φ1, φ〉(k, t) is the Wronskian of the Jost solutions. As a function
of k, the Wronskian W (k, t) is a holomorphic function in the domain D, it has
continuous limit values on the boundary ∂D and never vanishes on ∂D, except
possibly at the point k = ic. At this point there are two options:

(a) If W (ic, 0) 6= 0, then W (ic, t) 6= 0 for any t. In this case, we say that at the
point ic there is no resonance. It is a general situation.
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(b) If W (ic, 0) = 0 (i.e., W (ic, t) = 0 for any t), then we deal with the resonance
at the point ic. Note (cf. [7]) that in this case,

W (k, t) = C
√
k − ic (1 + o(1)), C = C(t) 6= 0.

For the operator H(t), the point ic is the only point where the resonance can
happen, that is why we associate the notion of the resonant or nonresonant cases
with the solution q(x, t).

Obviously, the transmission coefficient T (k, t) has a meromorphic extension
to the domain D with simple poles at the points iκ1,. . . ,iκN . We set

χ(k, t) := − lim
ε→+0

√
(k + ε)2 + c2

k
|T (k + ε, t)|2, k ∈ [0, ic].

This function is purely imaginary. Moreover,

χ(k, t) = i |χ(k, t)|, k ∈ [0, ic].

It is continuous on the set [0, ic) with χ(0, t) = 0. In the nonresonant case,

χ(k, t) = C(t)
√
k − ic(1 + o(1)), k → ic, C(t) 6= 0. (7)

In the resonant case, the function χ(k, t) has a singularity

χ(k, t) =
C(t)√
k − ic

(1 + o(1)), k → ic, C(t) 6= 0. (8)

Next, it is evident that the Jost solutions φ(iκj , x, t) are the eigenfunctions of the
operator H(t). Denote the inverse squares of the norms as

γj(t) =

(∫
R
φ2(iκj , x, t) dx

)−1

.

The functions R(k, t), k ∈ R, and χ(k, t), k ∈ [0, ic], and also the quantities
−κ2

j , γj(t), j = 1, . . . , N are the left scattering data of the operator H(t). Their
evolution due to the KdV flow is given by formulas (cf. [11]):

γj(t) = γje
−8κ3

j t+12c2κjt, (9)

χ(λ, t) = χ(k)e−8itk3−12itkc2 , (10)

R(λ, t) = R(k)e−8itk2−12itkc2 , (11)

where we denoted χ(k) = χ(k, 0), R(k) = R(k, 0), and γj = γj(0). By means of
the Inverse Scattering Transform, the solution q(x, t) of problem (1)–(3) can be
uniquely recovered from the left initial scattering data (see [7]),

{R(k), k ∈ R; χ(k), k ∈ [0, ic]; −κ2
j , γj > 0, j = 1, . . . , N}.
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The properties of the left scattering data listed above allow us to formulate a
vector RH problem. Namely, in D we introduce a meromorphic vector function
(variables x and t are treated as parameters)

m̃(k) = (m̃1(k), m̃2(k)) =
(
T (k, t)φ1(k, x, t)e−ikx, φ(k, x, t)eikx

)
. (12)

This function has the following expansion as k →∞ (cf. [1]):

m̃(k) =
(
1 1

)
+

1

2ik

(∫ x

−∞
(q(y, t)− c2)dy

)(
1 −1

)
+O

(
1

k2

)
, (13)

and therefore m̃ is bounded at infinity. The only singularities of this vector
function in D are the poles of its first component m̃1(k) at the points iκj . Beyond
these poles the function m̃ is continuous up to the boundary ∂D except, probably,
at the point ic in the resonant case. Let us extend m̃ to the domain D∗ = {k :

−k ∈ D} by the symmetry condition m̃(−k) = m̃(k)σ1, where σ1 =

(
0 1
1 0

)
is

the first Pauli matrix. After this extension the second component of the vector
function m̃(k) has poles at the points −iκj . Also, m̃(k) has jumps along the real
axis and along the segment [ic,−ic].

Introduce a cross-shaped contour Σ̃ := R∪ [ic,−ic] with a natural orientation
from minus to plus infinity on R, and from up to down on [ic,−ic]. Denote by
m̃+(k) (respectively m̃−(k)) the limiting nontangential values of m̃(k) from the
right (respectively left) in the contour direction.

To simplify notations throughout of this paper along with the first Pauli

matrix σ1, we use the third Pauli matrix σ3 =

(
1 0
0 −1

)
and three more matrices:

I =

(
1 0
0 1

)
, J :=

(
0 0
1 0

)
, J† :=

(
0 1
0 0

)
= σ1Jσ1. (14)

Let now Tj (respectively T∗j ) be circles centered at iκj (respectively −iκj) with

radii 0 < δ < 1
4 minNj=1 |κj − κj−1|, κ0 := 0. Choose δ > 0 so small that the

discs |k − iκj | < δ lie inside the upper half-plane and do not intersect any of the
other contours, moreover κ1 − δ > κ+ c, where κ is the same as in estimate (3).
The small circles Tj around iκj are oriented counterclockwise, and the circles T∗j
around −iκj are oriented clockwise.

Introduce also the phase function Φ(k) = Φ(k, x, t):

Φ(k) = −4ik3 − 6ic2k − 12iξk, ξ =
x

12t
.

This function is odd in C. Its stationary points are ±a, where a :=
√
− c2

2 − ξ.
The signature table for Re Φ(k) when ξ < − c2

2 is shown in Figure 1.
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Fig. 1: The signature table of Re(Φ(k)).

Redefine now m̃(k) inside Tj ,T∗j , j = 1, ..., N according to

m(k) =


m̃(k)Aj(k), |k − iκj | < δ,

m̃(k)σ1A
−1
j (−k)σ1, |k + iκj | < δ,

m̃(k), else,

(15)

where

Aj(k) =

(
1 0

− iγje
2tΦ(iκj)

k−iκj
1

)
= I− iγje

2tΦ(iκj)

k − iκj
J.

Thus m(k) becomes holomorphic but with additional jumps along the circles Tj ,
T∗j , j = 1, . . . , N . Moreover, it preserves the asymptotics (13) of m̃(k) as k →∞.

Theorem 2. Let {R(k), k ∈ R; χ(k), k ∈ [0, ic]; (κj , γj), 1 ≤ j ≤ N} be
the left scattering data of the operator H(0). Then the vector function m(k) =
m(k, x, t), defined by (12), (15), is the unique solution of the following vector
Riemann–Hilbert problem:

Find a vector function m(k) which is holomorphic away from the contour Σ =⋃N
j=1(Tj ∪ T∗j ) ∪ R ∪ [−ic, ic], has continuous limiting values from both sides of

the contour, except possibly of the points ±ic, and satisfies:

A. The jump condition m+(k) = m−(k)v(k), where

v(k) =



(
1− |R(k)|2 −R(k)e−2tΦ(k)

R(k)e2tΦ(k) 1

)
, k ∈ R,

(
1 0

χ(k)e2tΦ(k) 1

)
= I + χ(k)e2tΦ(k)J, k ∈ [ic, 0],

Aj(k), k ∈ Tj , k = 1, . . . , N,

σ1v
−1(−k)σ1, k ∈ ∪Nj=1T∗j ∪ [0,−ic].
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B. The symmetry condition

m(−k) = m(k)σ1. (16)

C. The normalization condition limκ→∞m(iκ) =
(
1 1

)
.

D. In the vicinities of the points ±ic:

(a) if χ(k) satisfies (7), then m(k) is continuous at the points ±ic;

(b) if χ(k) satisfies (8), then

m(k) =

(
C1√
k − ic

, C2

)
(1 + o(1)), k → ic, C1 6= 0,

with a similar condition at −ic due to (16).

Proof. The proof can be obtained combining the uniqueness result from [2]
and a slightly modified for the resonant case proof of Theorem 2.5 from [1].

3. Reduction to the Model Problem

In this section, we describe some conjugation/deformation steps as ξ < −c2/2
for the RH problem A–D which lead to an equivalent RH problem. The new RH
problem will have a jump matrix close to the unitary matrix I for large time
except of small vicinities of the points ±a. A short description of these steps
was proposed in Section 8 of [1]. We extend these steps taking into account the
resonant case.

According to the signature table of the phase function (see Figure 1), the
matrix v(k) is exponentially close for large t to the identity matrix I on the
segments [−ic, 0) ∪ (0, ic] and on the circles ∪Nj=1(Tj ∪ T∗j ), but it is oscillatory
with respect to t on the real axis. Besides one can have singularities of v(k) at the
points ±ic. As a first step, we apply the standard upper–lower and lower–upper
factorizations (cf. [6, 9]) to the matrix v(k) as k ∈ R. To this end, we construct
an analytic in the domain C \ ((−∞,−a) ∪ (a,∞)) function d(k) satisfying the
jump condition

d+(k) = d−(k)(1− |R(k)|2) for k ∈ R \ [−a, a],

and such that d(−k) = d−1(k) and d(k) → 1 as k → ∞. By the Sokhotski–
Plemelj formula, this function is explicitly given by

d(k) = exp

(
1

2πi

∫
R\[−a,a]

log(1− |R(s)|2)

s− k
ds

)
. (17)
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Since the domain of integration is even and the function log(1 − |R(s)|2) is also
even, then d(−k) = d−1(k). For k →∞, we have

d(k) = 1− 1

2πik

∫
R\[−a,a]

log(1− |R(s)|2) ds+O

(
1

k2

)
. (18)

Put m(1)(k) = m(k)d(k)−σ3 . Evidently, m(1)(−k) = m(1)(k)σ1. One can check

that (see, e.g., [9]) m(1)(k) satisfies the jump condition m
(1)
+ (k) = m

(1)
− (k)v(1)(k)

with

v(1)(k) =

(
1− |R(k)|2 −R(k)d2(k)e−2tΦ(k)

R(k)d−2(k)e2tΦ(k) 1

)
, k ∈ [−a, a],

v(1)(k) =

(
(1− |R(k)|2)d−1

+ (k)d−(k) −R(k)d+(k)d−(k)e−2tΦ(k)

R(k)d−1
+ (k)d−1

− (k) d−1
− (k)d+(k)

)
,

k ∈ R\[−a, a],

v(1)(k) = d(k)σ3v(k)d(k)−σ3 , k ∈ ∪Nj=1(TUj ∪ TLj ) ∪ [ic,−ic].

Recall that R(k) = R(−k) for k ∈ R. Under condition (3), one can continue the
function R(k) in the vicinity of the contour Σ̃. Introduce the domains Ω∗l , Ωl, Ω∗r ,
Ωr, Ω∗, and Ω together with their boundaries C∗l , Cl, C∗r , Cr, C∗, and C, which
are contained in the strip {k : | Im k| < c + κ} as depicted in Figure 2. Using
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Fig. 2: Contour deformation in the domain x < −6c2t.
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(14), put

B(k) :=I +R(k)d−2(k)e2tΦ(k)J, k ∈ Ω,

B∗(k) :=I−R(k)d2(k)e−2tΦ(k)J†, k ∈ Ω∗,

A(k) :=I +
R(k)d2(k)

1− |R(k)|2
e−2tΦ(k)J†, k ∈ Ωr ∪ Ωl,

A∗(k) :=I− R(k)d−2(k)

1− |R(k)|2
e2tΦ(k)J, k ∈ Ω∗r ∪ Ω∗l .

(19)

Then

v(1)(k) =

{
B∗−(k)B+(k), k ∈ [−a, a],

A∗−(k)A+(k), k ∈ R \ [−a, a].

Redefine m(1)(k) according to

m(2)(k) = m(1)(k)



B(k), k ∈ Ω,

B∗(k), k ∈ Ω∗,

A(k), k ∈ Ωl ∪ Ωr,

A∗(k), k ∈ Ω∗l ∪ Ω∗r ,

I, else.

(20)

Lemma 1. The following formulas are valid:

B−(k)v(1)(k)(B+(k))−1 = I, k ∈ [ic, 0],

(B∗−(k))−1v(1)(k)B∗+(k) = I, k ∈ [0,−ic].

Proof. We observe that for k ∈ [ic, 0]:

B−(k)v(1)(k)B+(k)−1 =

(
1 0

d(k)−2(R−(k)−R+(k) + χ(k))e2tΦ(k) 1

)
.

As is known, under condition (3), the complex conjugated Jost solution φ(k, x, 0)
can be continued analytically into a strip. Denote this continuation as φ̆(k, x, 0).
It does not have a jump along the interval [ic, 0]. Then the continuation of
R(k) can be represented via Wronskians in a usual way (cf. [7]). If φ1(k, x) :=
limε→+0 φ1(k + ε, x, 0), then

R−(k) = −〈φ1, φ̆〉
〈φ1, φ〉

, R+(k) = −〈φ1, φ̆〉
〈φ1, φ〉

, χ(k) = − 〈φ, φ̆〉
〈φ1, φ̆〉

〈φ1, φ1〉
〈φ1, φ〉

,

where 〈f, g〉 is the usual Wronskian of two solutions of (6). Applying the Plücker
identity (cf. [14]),

〈f1, f2〉 〈f3, f4〉+ 〈f1, f3〉 〈f4, f2〉+ 〈f1, f4〉 〈f2, f3〉 ≡ 0,
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to the functions f1 = φ1, f2 = φ, f3 = φ1, f4 = φ̆, we get

R−(k)−R+(k) + χ(k) ≡ 0, (21)

which proves the first identity of the lemma. The second identity can be proved
in the same way.

Note that equality (21) and transformation (20) imply that in both, the res-
onant and the nonresonant cases, the vector function m(2)(k) does not have a
jump along the interval [ic,−ic]. Therefore the final asymptotics will not depend
on the resonance.

By use of Lemma 1, we conclude that the vector function m(2)(k) satisfies the

jump m
(2)
+ (k) = m

(2)
− (k)v(2)(k) with

v(2)(k) =



B(k), k ∈ C,

B∗(k), k ∈ C∗,

A(k), k ∈ Cl ∪ Cr,

A∗(k), k ∈ C∗l ∪ C∗r ,

v(1)(k), k ∈ ∪Nj=1(Tj ∪ T∗j ).

(22)

Thus the matrix v(2)(k) has the structure

v(2)(k) = I +

{
F1(k), k ∈ ∪Nj=1(Tj ∪ T∗j ),
F2(k), k ∈ Cl ∪ C∪ Cr ∪ C∗l ∪ C∗ ∪ C∗r ,

with the matrices F1,2(k) admitting the estimates

‖F1(k)‖ ≤ Ce−Ct, ‖F2(k)‖ ≤ C(a)e−tµ(|k2−a2|), (23)

where ‖ · ‖ is any norm of a matrix 2 × 2, C > 0, C(a) > 0 and µ(s), s ∈ R+,
is a strictly increasing continuous function with µ(0) = 0 and µ(s) = O(s3/4) as
s→∞. Note that the vector function m(2)(k) has no jump along the contour Σ̃,
and, therefore, the effect of resonance is not noticeable for ξ < −c2/2. Due to
(23), we can conclude that m(2)(k) ∼

(
1 1

)
as k → ∞. As it will be shown in

the next section, an error term has the structure
(
1 −1

)
O(k−1)O(t−1/2).

Recall that for large imaginary k with |k| > κ1 + 1, we have m̃(k) =
m(2)(k)d(k)σ3 with d(k) defined by (17). By use of (18), one can expect that
for k →∞,

m̃1(k) = m1(k) ∼ d(k) = 1−

∫
R\[−a,a] log(1− |R(s)|2)ds

2πik
+
g(x, t)

k
+O

(
1

k2

)
,
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where g(x, t) = o(1), gx(x, t) = o(1) as t → ∞ uniformly with respect to x. The
function g(x, t) appears due to the effect of parametrix in small vicinities of the
points ±a. A formula for this function will be obtained in Section 4. Next, by
(13),

q(x, t) =
∂

∂x
lim
k→∞

2ik (m̃1(k)− 1). (24)

Since ∂
∂xa(ξ) = O(t−1), then it follows from (3) that after differentiation the

integral from the right-hand side will be of order O(t−1). Respectively,

q(x, t) = c2 + o(1), as t→∞.

Thus the leading term is equal to c2 as expected. In the next section we will
show that the effect of the parametrix points implies in fact the term of order
O
(
t−1/2

)
.

4. The Parametrix Problem

We use the same approaches as in [6, 13], but for the vector RH problem as
in [9]. Following these approaches, we start with investigation in more details of
the behavior of the jump matrix v(2)(k) near the point −a. Represent (17) as

log d(k) =
1

2πi

∫
R\[−a,a]

log
1− |R(s)|2

1− |R(−a)|2
ds

s− k

+
log(1− |R(−a)|2)

2πi

∫
R\[−a,a]

ds

s− k
.

Since
∫
R\[−a,a]

ds
s−k = log k+a

a−k , then

d(k) =

(
k + a

a− k

)iν

eη(k),

where

ν := ν(a) = − 1

2π
log(1− |R(−a)|2),

η(k) := η(k, a) =
1

2πi

∫
R\[−a,a]

log
1− |R(s)|2

1− |R(−a)|2
ds

s− k
. (25)

Let Dρ(−a) be a circle of the radius 0 < ρ < inf{1
4 ,

a
4} centered at the point

−a. Without loss of generality, one can assume that inside the domain Dρ(−a)
the contours C(ρ) := C∩Dρ(−a), C∗(ρ) := C∗ ∩Dρ(−a), Cl(ρ) := Cl ∩Dρ(−a),
C∗l (ρ) := C∗l ∩ Dρ(−a) are the parts of rays {−a + sei(2n+1)π/4, s ∈ R+}, and
they have orientations as depicted in Figure 3. Put

Γρ(−a) := C(ρ) ∪ C∗(ρ) ∪ Cl(ρ) ∪ C∗l (ρ).
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Fig. 3: The contour near the point −a.

Lemma 2. The following inequalities hold for all k ∈ Γρ(−a) and a > ε,
where ε is a constant from Theorem 1 :∣∣∣e−2η(k) − e−2η(−a)

∣∣∣ ≤ C|k + a|(1 + | log |k + a||), (26)∣∣∣1− e−2iν log k−a
2a

∣∣∣ ≤ Ca−1|k + a|, (27)

where the constant C = C(ε) does not depend on ξ and k.

Proof. We give the proof for k ∈ C(ρ). The other cases are similar. First we
show that

|η(k)− η(−a)| ≤ C|k + a|(1 + | log |k + a||), a ∈ I, k ∈ C(ρ). (28)

Divide the domain of integration in (25) into three parts [−∞,−2a], [−2a,−a],
[a,∞], and denote by I1(k), I2(k), I3(k) the respective integrals. For k ∈ C(ρ),
the following estimates are straightforward:

|I1(k)− I1(−a)| ≤ C|k + a|, |I3(k)− I3(−a)| ≤ C|k + a|. (29)

Integrating 2πiI2(ξ, k) by parts:∫ a

−2a
log

1− |R(s)|2

1− |R(−a)|2
ds

s− k

= − log
1− |R(−2a)|2

1− |R(−a)|2
log(−2a− k)

−
∫ a

−2a
log(s− k) d log(1− |R(s)|2),

we get

|I2(k)− I2(−a)| = 1

2π

∣∣∣∣log
k + 2a

a
log

1− |R(−2a)|2

1− |R(−a)|2
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+

∫ −a
−2a

log
s− k
s+ a

d log(1− |R(s)|2)

∣∣∣∣ .
Since |R(s)| ≤ C(ε) < 1 as |s| > ε, then

|I2(k)− I2(−a)| ≤ C(ε)

(∣∣∣∣∫ −a
−2a

∣∣∣∣log
s− k
s+ a

∣∣∣∣ ds∣∣∣∣+ |k + a|
)
.

The change of variables v = −|k + a|/(s+ a) gives∣∣∣∣∫ −a
−2a

log

∣∣∣∣s− ks+ a

∣∣∣∣ ds∣∣∣∣ = |k + a|

∣∣∣∣∣
∫ ∞
|k+a|
a

log(1 + veiπ
4 )
dv

v2

∣∣∣∣∣ ,
where we took into account that k ∈ C(ρ). Combining this estimate with the
estimate

| log |1 + ve
iπ
4 || ≤ C

{
v, 0 ≤ v ≤ 2

log v, 2 ≤ v ≤ ∞

and with (29), we get (28). Next, by Lemma 23.2 from [3], we get

sup
ξ<(−c2/2−ε)

sup
k∈C\R

|η(k)| <∞.

Using this, (28) and inequality |ew − 1| ≤ |w|max(1, eRew), w ∈ C, we get (26)
and also ∣∣∣1− e−2ν log k+a

2a

∣∣∣ ≤ ∣∣∣∣2ν log
k + a

2a

∣∣∣∣ e|Re(2iν log k+a
2a

)|

≤ C
∣∣∣∣log

(
1 +

k − a
2a

)∣∣∣∣ ≤ Ca−1|k + a|.

This proves (27).

Introduce a local parameter z =
√

48a(k+a). Then z ∈ Dρ1 , where Dρ1 is the
circle of the radius ρ1 =

√
48a ρ centered at 0. The contour Γρ(−a) in terms of

the variable z will have notation Γρ1 , and for the constituents of this contour we
will keep notations C, C∗, Cl, C∗l . Taking into account (5), put ϕ(z) := −8ia3 +
i
4z

2,

r1(z) := R̃(z)e−2η̃(z)e2iν log(2a
√

48a−z),

r2(z) :=
R̃(z)

1− |R̃(z)|2
e2η̃(z)e−2iν log(2a

√
48a−z),

r3(z) :=
R̃(z)

1− |R̃(z)|2
e−2η̃(z)e2iν log(2a

√
48a−z),
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r4(z) := R̃(z)e2η̃(z)e−2iν log(2a
√

48a−z).

where R̃(z) := R(k(z)), η̃(z) := η(k(z)). The phase function is represented as

Φ̃(z) := Φ(k(z)) = ϕ(z)− iz3

12a
√

48a
.

From (19) and (22), it follows that the jump matrix v(2)(k) as a function of the
variable z ∈ Γρ1 has the form

ṽ(2)(z) = I +


r1(z)z−2iνe2tΦ̃(z)J, z ∈ C,

−r2(z)z2iνe−2tΦ̃(z)J†, z ∈ Cl,

−r3(z)z−2iνe2tΦ̃(z)J, z ∈ C∗l ,

r4(z)z2iνe−2tΦ̃(z)J†, z ∈ C∗.

(30)

Put now

f := f(a) = R(−a)e−2η(−a)e2iν(a) log(2a
√

48a). (31)

Since ν ∈ R and η(−a) ∈ iR, then |f | = |R(−a)|. From Lemma 2, it follows that
for z ∈ Dρ1 the functions {rj(z)}41 satisfy the inequalities:

|r1(z)− f | ≤ C(ε)|z|α, z ∈ C,∣∣∣∣r2(z)− f

1− |f |2

∣∣∣∣ ≤ C(ε)|z|α, z ∈ Cl,∣∣∣∣r3(z)− f

1− |f |2

∣∣∣∣ ≤ C(ε)|z|α, z ∈ C∗l ,∣∣r4(z)− f
∣∣ ≤ C(ε)|z|α, z ∈ C∗,

(32)

where α < 1 can be chosen arbitrary close to 1. Now we are ready to formulate an
auxiliary RH problem in the domain Dρ1 , which is called the parametrix problem.
We are looking for a holomorphic in Dρ1 \Γρ1 matrix function Mpar(z) satisfying
the jump condition

Mpar
+ (z) = Mpar

− (z)vpar(z), z ∈ Γρ1 , with (33)

vpar(z) := I +


fz−2iνe2tϕ(z)J, z ∈ C,

fz2iνe−2tϕ(z)J†, z ∈ C∗,

− f
1−|f |2 z

2iνe−2tϕ(z)J†, z ∈ Cl,

− f
1−|f |2 z

−2iνe2tϕ(z)J, z ∈ C∗l ,

(34)

and the boundary condition Mpar(z) ∼ I, as z ∈ ∂Dρ1 .
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Fig. 4: The sets Ωj and the rays Yi, j = 1, . . . , 4.

This problem was solved in [9, 13]. We recall briefly the main steps in the
construction of its solution. Denote ζ =

√
t z. We study the parametrix problem

solution for large t. Consider first another auxiliary matrix RH problem in the
domain C\Y , where Y = Y1 ∪ Y2 ∪ Y3 ∪ Y4 and Yi = {sei(2n+1)π/4, s ∈ R+} are
the contours as depicted in Figure 4. Let MY (ζ) solve the following problem:

MY (ζ)→ I, ζ →∞, (35)

MY
+ (ζ) = MY

− (ζ)vY (ζ), ζ ∈ Y, (36)

where the jump matrix vY (ζ) is defined by

vY (ζ) := I +



fζ−2iνe
iζ2

2 J, ζ ∈ Y1,

− f
1−|f |2 ζ

2iνe
−iζ2

2 J†, ζ ∈ Y2,

− f
1−|f |2 ζ

−2iνe
iζ2

2 J, ζ ∈ Y3,

fζ2iνe−
iζ2

2 J†, ζ ∈ Y4.

(37)

Following [13], define a sectionally analytic function M̃Y (ζ) by

M̃Y (ζ) :=

 ψ11(ζ)
( d
dζ
− iζ

2
)ψ22(ζ)

β
( d
dζ

+ iζ
2

)ψ11(ζ)

β ψ22(ζ)

 , ζ ∈ C\R,

where β = β(a) is given by

β :=
√
ν(a)ei(π

4
−arg f(a)+arg Γ(iν(a))), (38)

and the functions ψ11, ψ22 are defined by

ψ11(ζ) =

{
e−

3πν
4 Diν(e−

3iπ
4 ζ), Im ζ > 0,

e
πν
4 Diν(e

iπ
4 ζ), Im ζ < 0,
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ψ22(ζ) =

{
e
πν
4 D−iν(e−

iπ
4 ζ), Im ζ > 0,

e−
3πν

4 D−iν(e
3iπ
4 ζ), Im ζ < 0.

Here Ds(z) denotes the parabolic cylinder function. Then (cf. [13]) the solution
MY (ζ) of the matrix RH problem (35)–(37) is the following:

MY (ζ) = M̃Y (ζ)Dj(ζ), ζ ∈ Ωj , j = 0, . . . , 4,

where D0(ζ) = ζ−iνσ3e
iζ2

4
σ3 and

D1(ζ) = (I− fJ)D0(ζ), D2(ζ) = (I +
f

1− |f |2
J†)D0(ζ),

D3(ζ) = (I +
f

1− |f |2
J)D0(ζ), D4(ζ) = (I− fJ†)D0(ζ).

The matrix MY (ζ) is analytic for ζ ∈ C\Y and satisfies the jump condition
MY

+ (ζ) = MY
− (ζ)vY (ζ), where vY (ζ) is defined by (37). Also, MY (ζ) satisfies the

asymptotic formula

MY (ζ) = I +
i

ζ

(
0 −β
β 0

)
+O

(
1

ζ2

)
, ζ →∞, (39)

where β = β(a) is defined by (38). Put D(t) := e8ia3tσ3t−iνσ3/2 and introduce the
matrix Mpar(z) by the formula

Mpar(z) := D(t)MY (
√
tz)D(t).

It is straightforward to check that Mpar(z) satisfies (33)–(34). Due to (39), it is
close as t→∞ to the identity matrix on ∂Dρ1 .

Put now M−a(k) = Mpar(
√

48a(k + a)). This function is holomorphic in
Dρ(−a) \ (C∪ C∗ ∪ Cl ∪ C∗l ) has the jump with the matrix vpar(

√
48a(k + a)).

It is easy to see that the matrix Ma(k) := σ1M−a(k)σ1 solves the corresponding
parametrix problem in the domain Dρ(a) \ (C∪ C∗ ∪ Cr ∪ C∗r ). Moreover, due
to (39),

M−a(k) = I +
i√

48at(k + a)

(
0 −βe16ia3tt−iν

βe−16ia3ttiν 0

)

+O

(
1

t

)
, k ∈ ∂Dρ(−a), (40)

Ma(k) = I− i√
48at(k − a)

(
0 βe−16ia3ttiν

−βe16ia3tt−iν 0

)
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+O

(
1

t

)
, k ∈ ∂Dρ(a).

The completion of the asymptotical analysis repeats now almost literally the same
considerations as in [13], Theorem 2.1. To describe them briefly, let us denote

Γ̃ := Cl ∪ C∗l ∪ C∪ C∗ ∪ Cr ∪ C∗r ∪ ∂Dρ(−a) ∪ ∂Dρ(a).

For the vector m(2)(k) corresponding to the jump matrix (30), put

m̂(k) =

{
m(2)(k)(M∓a(k))−1, |k ± a| < ρ,

m(2)(k), otherwise.

Then the vector function m̂(k) is holomorphic in C \ Γ̃, it satisfies the standard
symmetry and the normalization conditions, that is, m̂(k) → (1 1) as k → ∞
and m̂(−k) = m̂(k)σ1. Moreover, it has a jump on Γ̃ with the jump matrix

v̂(k) =


(M∓a(k))− v

(2)(k)(M∓a(k))−1
+ , k ∈ Γρ(∓a),

(M∓a(k))−1, |k ± a| = ρ,

v(2)(k), otherwise.

Now from Theorem 2.1 of [13], estimates (32), (40), and a trivial equality

1

2πi

∫
|k±a|=ρ

dk

k ± a
= 1

(the integration is counterclockwise), it follows that

lim
k→i∞

2ik
(
m̂(k)−

(
1 1

))
= − 1

π

(
1 1

)(∫
|k+a|=ρ

(M−a(k)− I) dk

+

∫
|k−a|=ρ

(Ma(k)− I) dk

)
+O(t−

1+α
2 )

=
2√

48at
(1, −1)

(
βe16ia3t−iν log t + βe−16ia3t+iν log t

)
+O(t−

1+α
2 )

=

√
ν(a)√
3at

cos

(
16a3t− ν(a) log t− i log

β(a)√
ν(a)

)
+O(t−

1+α
2 ), (41)

where the term O(t−
1+α

2 ) can be differentiated with respect to x, and the deriva-

tive has the same order O(t−
1+α

2 ) as t → ∞ uniformly with respect to ξ in the
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domain ξ < − c2

2 − ε (cf. [13], Theorem 2.1). Next, by (5), we have ∂a
∂x = − 1

24at .
Combining this with (24), (31), (38) and (41), we get

q(x, t) = c2 +

√
4ν(a)a

3t
sin
(

16ta3 − ν(a) log t+
π

4
− arg f(a) + arg Γ(iν)

)
with

arg f(a) = ν(a) log(192a3) + argR(−a) +
1

π

∫
R\[−a,a]

log

(
1− |R(s)|2

1− |R(a)|2

)
ds

s+ a
.

The result of Theorem 1 is now immediate from argR(−a) = − argR(a) and the
oddness of the last integral with respect to a.
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