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Abstract
In 2000Victor Lomonosov suggested a counterexample to the complex version of theBishop–
Phelps theorem on modulus support functionals. We discuss the c0-analog of that example
and demonstrate that the set of sup-attaining functionals is non-trivial, thus answering an open
question, asked in Kadets et al. (The mathematical legacy of Victor Lomonosov. Operator
theory. Advances in analysis and geometry 2. De Gruyter, Berlin, 157–187, 2020).

Keywords Sup-attaining functional · Space c0 · Wiener algebra · Rajchman measure · Peak
function
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1 Introduction

In the text below, the letter X is used for a Banach space, X∗ is the corresponding dual space,

B(X) = {x ∈ X : ‖x‖ ≤ 1}, S(X) = {x ∈ X : ‖x‖ = 1}
stand for its unit ball and sphere, respectively, M⊥ is the annihilator in X∗ of a closed subspace
M of X . Abbreviation bcc-set means non-empty bounded closed convex set. For a given bcc
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subset C ⊂ X , a non-zero functional h ∈ X∗ is said to be a modulus support functional for
C if there is a point y ∈ C (called a corresponding modulus support point of C) such that

|h(y)| = sup
x∈C

|h(x)|.

We denote by D = {z ∈ C: |z| < 1} the open unit disk in the field of complex numbers,
T = {z ∈ C: |z| = 1} the unit circle, and D = D ∪ T the closed unit disk.

The classical result of Bishop and Phelps [2,3] says that in every real Banach space X
for every bcc subset C ⊂ X the set of modulus support functionals for C is dense in X∗.
The same question [15] for complex linear functionals on a complex Banach space remained
open until 2000, when Victor Lomonosov [10,11] constructed his ingenious counterexample
in the predual space of H∞ (see also [12] and the next section).

In [12] Lomonosov introduced the following definition: a complex Banach space X has
the attainable approximation property (AAP) if for any bcc-subset W ⊂ X the corresponding
set of modulus support functionals is norm dense in X∗. By a weak compactness argument,
all reflexive spaces, in particular L p[0, 1] with 1 < p < ∞ and �p with 1 < p < ∞, enjoy
the AAP. In contrast, L∞[0, 1] and �∞ contain isometric copies of every separable Banach
space (see [6, Sect. 17.2.4, Exercises 5–8] or [1, Theorem 2.5.7]), so Lomonosov’s example
can be transferred to those spaces. Consequently, the complex spaces L∞[0, 1] and �∞ do
not have the AAP. Surprisingly, for such classical complex spaces as c0 and L1[0, 1], it is
unknown whether they possess the AAP or not.

A natural approach to settle the problem in the negative is to transfer somehow the original
Lomonosov’s example to other spaces and to check if it preserves its properties in this new
setting. Such a version of Lomonosov’s example for the case of c0 was introduced in the last
section of [7], where it was asked, in particular, if there are any modulus support functionals
for that version.

Although the c0-version of Lomonosov’s example and the corresponding question about
norm-attaining functionals were published “officially” in 2019, they are much older. The
example was invented by the second author in 2003. Since then, the corresponding problem
was reported to many colleagues that work in Banach space theory or Complex analysis
(in particular, to V. Lomonosov), but with no progress. It was a lucky coincidence that, on
October 29, 2019, the first author of this paper was attending the Kharkiv mathematical
society meeting where the second author was advertising this open problem.

In this note we demonstrate the existence of “many” modulus support functionals for the
c0-version of Lomonosov’s set. Nevertheless, the more involved question whether the set of
modulus support functionals is dense in c∗

0 remains open, and so the possibility to disprove
the AAP for c0 by means of Lomonosov’s example is still in doubt.

The structure of the paper is the following. In Sect. 2 we recall the basic features of
the original Lomonosov’s example. In Sect. 3 we begin with the precise definition of c0-
version S0 ⊂ B(c0) of Lomonosov’s set. The key message of our note is a tight relation
of modulus support functionals for S0 to two notions in harmonic analysis, peak sets and
Rajchman measures. We reveal this relation later in Sect. 3, and so reduce the problem of
existence of modulus support functionals for S0 to a subtle problem of existence of certain
Rajchman measures (in one direction the reduction was performed in [7]). In the last section
we construct such measures as the Cantor measures of constant ratio, and demonstrate the
way of generating infinite families of such measures.

Starting from this point, we deal only with complex Banach spaces.
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2 The original Lomonosov’s example

Let us equip the unit circle T with the normalized Lebesgue measure m(dt), and consider
the corresponding space L1(T). In the standard coupling

〈g, x〉 =
∫
T

x(t)g(t) m(dt), x ∈ L1(T), g ∈ L∞(T), (1)

the dual space to L1(T) is identified with L∞(T). Let H1 be the standard Hardy space,
H1
0 = t H1 be the closed linear span in L1(T) of the functions {tk}k≥1. Consider the quotient

space X = L1(T)/H1
0 . Then X∗ = (H1

0 )⊥ (see, e.g., [6, Sect. 9.4.2]), and so [8, Chapter
VII.A.1],

X∗ = {g ∈ L∞(T) :
∫
T

g(t)tnm(dt) = 0, n = 1, 2, . . .} = H∞.

The space H∞ is known to consist of those functions g ∈ L∞(T) that can be extended to
bounded analytic functions in the open unit disk D in such a way that limr→1 g(rζ ) = g(ζ )

for almost all ζ ∈ T [8, Chapter I.D]. Also, ‖g‖L∞ = ‖g‖H∞ = supz∈D |g(z)|. H∞ is a
unital Banach algebra with the standard product and with the identity function 1 being the
unit element.

Each function g ∈ H∞ admits the following Cauchy representation (see, e.g., [8, Chapter
II.B.3]):

g(z) =
∫
T

g(t)

1 − t̄ z
m(dt), z ∈ D. (2)

Consider the family of functions

uz(t) := 1

1 − t̄ z
=

∑
k≥0

zk t−k ∈ L1(T),

and their classes [uz] in the quotient space X . It is clear from (2), that each functional g ∈ H∞
acts on [uz] as the evaluation functional

〈g, [uz]〉 = g(z), ‖[uz]‖X = sup
‖g‖∞=1

|〈g, [uz]〉| = 1.

Clearly, X equals the closed linear span of [uz], z ∈ D. Denote by S the closed convex hull
in X of all [uz], z ∈ D. This bcc set S ⊂ B (X) is a key ingredient of Lomonosov’s example
mentioned above. The main result of [10] says that the only modulus support functionals for
S are constant functions in H∞.

Let us briefly recall the Lomonosov’s reasoning about modulus support functionals for S.
First, [10, Lemma 1] states that

lim
k→∞〈gk, x〉 = 0

for every non-constant g ∈ B (H∞) and every x ∈ S. For x = [uz] this is true since
|g(z)| < 1, z ∈ D. The rest follows from the boundedness of the sequence (gk) together with
the pointwise convergence criterion for functionals (see [6, Sect. 17.2.1]). Next, [10, Lemma
2] says that if h = h(S) ∈ H∞ is a modulus support functional for S, and y = y(S) ∈ S is
the corresponding modulus support point, then

lim
k→∞〈hk, y〉 = 1.
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This follows from very clever Banach algebra argument: H∞ is a subalgebra of the
algebra C(M) of continuous functions on the corresponding Gelfand compact, action of y on
elements of H∞ can be represented as integral over M with some Borel probability measure
ν, and h(S) happens to be identical one on the support of ν. These two results together imply
that the only possible modulus support functionals for S are constant functions.

Remark 2.1 There is one more trick from [10] that “kills” the constant functions: consider
instead of X the quotient space X1 = X/Lin δ0, then X∗

1 is the subspace of those g ∈ H∞
that g(0) = 0. Then the image q(S) of S under the quotient map q : X → X/Lin δ0 is a bcc
set in X1 that possess no modulus support functionals at all!

3 Modulus support functionals for the space c0

In this section we consider the Banach spaces c0 and c∗
0 = �1 = �1(Z+) in the coupling

〈a, x〉 =
∑
n≥0

xnan, x ∈ c0, a ∈ �1,

where xn , an are the coordinates of vectors x and a, respectively. We identify each element
x = (x j ) j≥0 ∈ c0 with the function fx in the unit disk by the rule fx (z) = ∑∞

n=0 xnzn

for all z ∈ D. In this way we identify c0 with the corresponding Banach space c0(D) of
analytic functions having convergent to zero sequences of Taylor coefficients at the origin,
equipped with the norm ‖ fx‖c0 = ‖x‖∞ = maxn∈N |xn |. Similarly, we identify c∗

0 = �1 with
the Wiener algebra W + of analytic functions in the unit disk having absolutely convergent
Taylor series

a = (a j ) j≥0 ∈ �1 ⇔ fa =
∑
n≥0

anzn ∈ W +, ‖ fa‖+ = ‖a‖1 =
∑
n≥0

|an |. (3)

The functional a is said to be non-trivial if a /∈ {(α, 0, 0, . . .), α ∈ C}, that is, the function
fa is non-constant. We define duality

〈 fa, fx 〉 = 〈a, x〉,
which agrees in a sense with the duality formula (1) from Sect. 2.

The set S0, a counterpart of Lomonosov’s set above, looks as follows. Given λ ∈ D, let

ϕλ := (λ j ) j≥0 ∈ c0, ‖ϕλ‖c0 = 1,

and denote by S0 the closed convex hull in c0 of all ϕλ, λ ∈ D. It is clear that

〈a, ϕλ〉 = fa(λ), ∀a ∈ �1. (4)

To have a new insight on the problem, we recall two notions from the harmonic analysis.
Given a finite complex Borel measure μ on the unit circle T, its Fourier–Stieltjes coeffi-

cients μ̂(k) are defined by the formula

μ̂(k) =
∫
T

t−kμ(dt), k ∈ Z.

The measureμ belongs to the class R (after A. Rajchman) if its Fourier–Stieltjes coefficients
tend to zero on the left

lim
n→+∞ μ̂(−n) = 0.
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As a matter of fact, lim|n|→+∞ μ̂(n) = 0 holds in this case, see [5, p. 203].
A closed set E ⊂ T of measure zero is said to be a weak peak set for W + if there is

a function gE ∈ W +, called a weak peak function, and a complex number β �= 0 so that
gE = β on E and ‖gE‖∞ = |β|. Obviously, a closed subset of a weak peak set for W + is
again a weak peak set.

We will define peak sets and peak functions later in the next section.
The idea of the result below is borrowed from [7]. We present it here for the sake of

completeness.

Theorem 3.1 Let b be a non-trivial modulus support functional for the set S0. Then there is
a measure μ ∈ R such that the sequence of its Fourier–Stieltjes coefficients (μ̂(−n))n≥0 is
the modulus support point in S0 that corresponds b. Moreover, the set E = suppμ is a weak
peak set for W +, with fb being the corresponding weak peak function.

Proof The following equality is important in the rest of the paper

sup
x∈S0

|〈a, x〉| = ‖ fa‖∞, ∀a ∈ �1. (5)

Indeed, for x ∈ conv(ϕλ)λ∈D, that is,

x =
n∑

k=1

wkϕλk , wk ≥ 0,
n∑

k=1

wk = 1,

we have, by (4),

〈a, x〉 =
n∑

k=1

wk〈a, ϕλk 〉 =
n∑

k=1

wk fa(λk), |〈a, x〉| ≤ ‖ fa‖∞.

On the other hand, if ‖ fa‖∞ = | fa(t)|, t ∈ T, then

lim
r→1− |〈a, ϕr t 〉| = | fa(t)| = ‖ fa‖∞,

as claimed.
Next, let x = (x j ) j≥0 ∈ S0. Take a convex combination tending to x ,

w(n) = (
w

(n)
j

)
j≥0 =

∑
k

wn,k ϕλk → x, n → ∞, (6)

where each sum is finite. In the spaceM(D) = C(D)∗ of finite Borel measures onD consider
the sequence of probability measures (of unit total mass)

μ(n) :=
∑

k

wn,k δ(λk),
∑

k

wn,k = 1,

where δ(λ) is the Dirac measure at the point λ ∈ D. Due to *-weak compactness of the
subset of all probability measures in M(D), we can assume (passing to a subsequence, if
necessary), that ∗− limn→∞ μ(n) = μ for some probability measureμ = μx . For each fixed
j = 0, 1, 2, . . ., the latter relation and (6) imply

∫
D

λ jμ(n)(dλ) =
n∑

k=1

wn,k λ
j
k = w

(n)
j ,

lim
n→∞

∫
D

λ jμ(n)(dλ) =
∫
D

λ jμx (dλ) = μ̂x (− j) = x j , j = 0, 1, 2, . . . .
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Since x ∈ c0, we have

lim
j→∞ μ̂x (− j) = 0, (7)

so for each x the measure μx belongs to the class R.
Similarly, in view of (4) and (6), for each a ∈ �1 and x ∈ S0

∫
D

fa(λ)μ(n)(dλ) =
n∑

k=1

wn,k fa(λk) = 〈a, w(n)〉,

lim
n→∞

∫
D

fa(λ)μ(n)(dλ) =
∫
D

fa(λ)μx (dλ) = 〈a, x〉.

In the case when a = b is a modulus support functional for S0, y ∈ S0 is the corresponding
modulus support point, and in view of the definition of modulus support functionals and (5),
we come to the main equality

∣∣∣∣
∫
D

fb(λ)μy(dλ)

∣∣∣∣ = |〈b, y〉| = sup
x∈S0

|〈b, x〉| = ‖ fb‖∞. (8)

If, in addition, b is non-trivial, it follows from (8) that suppμy ⊂ T, and there is a constant
β ∈ C\{0} such that

fb(t) = β, t ∈ suppμy; ‖ fb‖∞ = |β|. (9)

So, μ = μy is a desired measure. The proof is complete. ��

Our next goal is to demonstrate that, conversely, each weak peak set E and each measure
ν ∈ R with supp ν ⊂ E generate modulus support point and functional for S0. We start
with a lemma analogous to the fact that Riemann integral sums of a continuous function
approximate the corresponding integral.

Lemma 3.2 For each n ∈ N we divide T in n disjoint arcs 
n,k , k = 1, 2, . . . , n , of equal
length:


n,k :=
[
e
2(k−1)π i

n , e
2kπ i

n

)
, k = 1, 2, . . . , n, m(
n,k) = 1

n
.

Put ζn,k := rn exp
(

(2k−1)π i
n

) ∈ D, where 0 < rn < 1 is taken in such a way that

|ζn,k − t | <
π

n
, ∀t ∈ 
n,k, k = 1, 2, . . . , n.

Given an arbitrary Borel probability measure ν on T, denote

νn :=
n∑

k=1

ν(
n,k) δ(ζn,k) ∈ M(D).

Then for every continuous function f on D

lim
n→∞

∫
D

f (λ)νn(dλ) =
∫
T

f (λ)ν(dλ).
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Proof The uniform continuity of f implies that, for each ε > 0, there is N ∈ N such that for
every ζ, τ ∈ D with |ζ − τ | < π N−1, the inequality | f (ζ ) − f (τ )| < ε holds true. Then,
for every n > N we have that

∣∣∣∣
∫
D

f (λ)νn(dλ) −
∫
T

f (λ)ν(dλ)

∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ν(
n,k) f (ζn,k) −
n∑

k=1

∫

n,k

f (t)ν(dt)

∣∣∣∣∣

=
∣∣∣∣∣

n∑
k=1

(∫

n,k

f (ζn,k)ν(dt) −
∫


n,k

f (t)ν(dt)

)∣∣∣∣∣

≤
n∑

k=1

∫

n,k

| f (ζn,k) − f (t)| ν(dt) < εν(T) = ε.

��
Theorem 3.3 Let E and hE = fb, b ∈ �1 be a weak peak set and a corresponding weak peak
function for W +, respectively. Let ν ∈ R be a probability measure with supp ν ⊂ E. Then b
is the modulus support functional for S0, and y = (y j ) j≥0, y j = ν̂(− j), is the corresponding
modulus support point.

Proof We show first that y = (y j ) j≥0, y j = ν̂(− j), belongs to S0. To this end, note that

〈a, y〉 =
∞∑
j=0

a j ν̂(− j) =
∫
D

fa(λ)ν(dλ), ∀a ∈ �1.

For each n ∈ N, consider the arcs 
n,k , k = 1, 2, . . . , n, the points ζn,k ∈ D, and the
measures νn from Lemma 3.2. Denote

v
(n)
j =

n∑
k=1

ν(
n,k) ζ
j

n,k =
∫
D

λ j νn(dλ), j = 0, 1, . . . ,

v(n) = (
v

(n)
j

)
j≥0 :=

n∑
k=1

ν(
n,k) ϕζn,k ∈ S0.

Then, for each fixed j = 0, 1, . . ., Lemma 3.2 with f (t) = t j gives

lim
n→∞ |v(n)

j − y j | = lim
n→∞

∣∣∣∣
∫
D

λ jνn(dλ) −
∫
T

t jν(dt)

∣∣∣∣ = 0.

By the weak convergence criterion in c0 (coordinate-wise convergence plus boundedness,
see [6, Sect. 17.2.3, Theorem 1]), this means that v(n) converge weakly to y, so y belongs
to the weak closure of S0. But a closed convex set is also weakly closed [6, Sect. 17.2.3,
Theorem 3], so y ∈ S0.

Next, fb is a weak peak function, and supp ν ⊂ E , so

〈b, y〉 =
∫
T

fb(λ)ν(dλ) =
∫

E
fb(λ)ν(dλ) = β.

On the other hand, by (5),

|〈b, x〉| ≤ ‖ fb‖∞ = |β| = |〈b, y〉|, ∀x ∈ S0,

as stated. The proof is complete. ��
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4 Can a peak set forW+ bear a Rajchmanmeasure?

The existence of singular measures in the class R is not obvious at all. It seems that these
properties contradict each other, and they can hardly be reconciled. Indeed, the support
of such measure μ is “small” and, according to the Uncertainty Principle [4], this is an
obstacle for the spectral smallness of μ which is now expressed by the Rajchman condition
lim|n|→∞ μ̂(n) = 0. Nevertheless, properties are compatible, and we show the examples of
such measures. Moreover, the support of the constructed measure will be a subset of a peak
set for W +.

A closed set E ⊂ T of measure zero is said to be a peak set for W +, if there is a function
gE ∈ W +, called a peak function so that

gE (z) = 1, z ∈ E; |gE (z)| < 1, z ∈ D\E . (10)

It is clear, that each peak set for W + is a peak set in the weak sense. Conversely, each
weak peak set F is a subset of a certain peak set. Indeed, let fF be a corresponding weak
peak function so that fF = 1 on F . Define E := {t ∈ T : fF = 1} ⊃ F . It is easy to see
that

gE (z) := fF (z) + 1

2

is the peak function for the peak set E . It is not known whether each closed subset of a peak
set for W + is again a peak set (this is true for some other classes of function, such as Aα

below).
Recall the construction of the Cantor set of constant ratio ξ , 0 < ξ < 1

2 . We start out
from the unit interval [0, 1] and remove a concentric open interval (with the center at 1/2)
of the length 1 − 2ξ at the first step. We remove then two concentric open intervals of the
relative length 1− 2ξ from each of two remained closed intervals at the second step, etc. So,
at n-th step we remove 2n−1 concentric open intervals of the relative length 1−2ξ from each
remained closed interval. Denote by En(ξ) the disjoint union of 2n closed intervals remaining
after n-th step. The length of each equals ξn , so m(En(ξ)) = (2ξ)n , and En+1(ξ) ⊂ En(ξ).
By the definition, the Cantor set of constant ratio ξ is

E(ξ) =
∞⋂

n=1

En(ξ), m(E(ξ)) = 0.

E is a perfect subset of [0, 1]. The Cantor triadic set arises for ξ = 1
3 .

To define a related measure, denote by σn(ξ) the normalized restriction of the Lebesgue
measure on En . As is known [4, p. 58], the *-weak limit

∗ − lim
n→∞ σn(ξ) = σ(ξ)

exists. It is usually referred to as the Cantor measure of ratio ξ . The measure σ(ξ) is singular
continuous, and supp σ(ξ) = E(ξ).

Any measure on [0, 1] can be carried over to a measure on T in a natural way by means
of the mapping t → e2π i t . We use the same symbol σ(ξ) for the Cantor measure of ratio ξ

on T. An amazing feature of this measure is the fact that its Fourier–Stieltjes coefficients are
available explicitly [17, Chapter V, (3.5)]

σ̂n(ξ) = (−1)n
∞∏

k=1

cos
(
πnξ k−1(1 − ξ)

)
.
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A complete description of the Cantor measures within the Rajchman class is due to R.
Salem: σ(ξ) /∈ R if and only if ξ−1 is a Pisot number, that is, an integer algebraic numberwith
all its conjugates inside the unit disk [17, Theorem XII.11.8]. For rational ξ the result was
proved earlier by N.K. Bari, who showed that σ(ξ) /∈ R if and only if ξ−1 is a positive integer
(so the standard Cantor triadic measure is not inR). In conclusion, all Cantor measures σ(ξ)

but countably many belong to R.
Going back to peak sets and functions for the Wiener algebra W +, note that, to the best

of our knowledge, the subject has not attracted much attention so far. In contrast, there is a
detailed account of such sets and functions for the space Aα [13,14]. By Aα , 0 < α ≤ 1, we
denote the class of analytic in D functions f satisfying a Lipschitz condition of order α

| f (z) − f (w)| ≤ C |z − w|α, z, w ∈ D.

In particular, [14, Theorem 3.1] provides a metric condition on E (in terms of the lengths
of the complementary arcs) to be a peak set for Aα , 0 < α < 1. Precisely, let

T\E =
⋃
n≥1

�n,

a disjoint union of open arcs. Then E is a peak set for Aα as soon as∑
n≥1

m(�n)1−α < ∞, (11)

or, equivalently, d−α
E ∈ L1(T), dE (ζ ) stands for the distance from ζ to E . Condition (11)

can be easily verified for the Cantor sets E(ξ) for certain values of ξ . Indeed, we have

m(� j ) = ξ k(1 − 2ξ), j = 2k, 2k + 1, . . . , 2k+1 − 1, k = 0, 1, 2, . . . ,

and so

∑
n≥1

m1−α(�n) =
∞∑

k=0

2k+1−1∑
j=2k

ξ k(1−α)(1 − 2ξ)1−α = (1 − 2ξ)1−α
∞∑

k=0

(2ξ1−α)k < ∞,

as soon as

0 < ξ <
(1
2

) 1
1−α

. (12)

We come to the following conclusion: for all but countably many ξ that satisfy (12), the
Cantor set E(ξ) is the peak set for Aα , and the Cantor measure σ(ξ) ∈ R, simultaneously.

To complete the argument, we invoke a theorem of S.N. Bernstein [17, Theorem VI.3.1],
which states that Aα ⊂ W + for α > 1

2 . Summarizing, we obtain the following result.

Theorem 4.1 For infinitely many values of ξ , the Cantor measure σ(ξ) belongs to the Rajch-
man class R, and the corresponding Cantor set E(ξ) = supp σ(ξ) is the peak set for W +.
Consequently, there exist modulus support points and non-trivial modulus support functionals
for the set S0 from Sect. 3.

Remark 4.2 Each peak function g = gE ∈ W + generates a family of other peak functions in
W +, which correspond to the same peak set E . Precisely, let F be an analytic function in a
neighborhood of D. Since gE (D) ⊂ D, the Wiener–Lévy theorem [16, Theorem 6.2.16, (b)]
states that the composition G(z) := F(gE (z)) also lies in W +. Let, in addition,

|F(z)| < F(1) = 1, z ∈ D.
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Then G clearly satisfies (10), so G is the peak function for E .
Here is an interesting particular case. Let g0 = gE (0) �= 0, consider a Blaschke factor

F(z) := eiγ z − g0
1 − ḡ0z

, e−iγ = 1 − g0
1 − ḡ0

.

Then G(z) = F(gE (z)) is the peak function for W +, and G(0) = 0.
In the above terminology, each modulus support functional generates an infinite family of

other modulus support functionals with the same modulus support point.

Remark 4.3 It remains to establish the formal connection between the c0-version of
Lomonosov’s example described in Sect. 3, and the version from [7]. The latter version
was written in the form in which the constant functions were already quotient out, like it was
done in Remark 2.1. This means that, in order to get from our S0 ⊂ c0 to the version from [7],
one has to consider the subspace E ⊂ c0 consisting of vectors of the form (α, 0, 0, 0, . . .)
and to apply to S0 the quotient map q: c0 → c0/E . The modified example is q(S0). Taking
into account the natural identification of the quotient space c0/E with the subspace c̃0 ⊂ c0
of vectors x = (x j ) j≥0 ∈ c0 for which x0 = 0, and the natural identification of (c̃0)∗ with the
subspace �̃1 ⊂ �1 of vectors a = (a j ) j≥0 ∈ �1 for which a0 = 0, one gets the representation
of q(S0) from [7] in which the zero coordinates x0 and a0 are omitted, and the enumeration
starts with the first coordinate.

The important difference between S0 and q(S0) is that in order to find a modulus support
functional on q(S0) one needs to build a modulus support functional a = (a j ) j≥0 ∈ �1 on
S0 with the additional restriction a0 = 0. In other words, one needs to find a peak function G
for W + with G(0) = 0. In Remark 4.2 we have demonstrated that this additional condition
can be met, so the question from the introductory part of [7] about the existence of modulus
attaining functionals on q(S0) solves in positive. The Problem 13.50 from [7] about the
density in (c̃0)∗ of the set of modulus attaining functionals on q(S0) remains open.

References

1. Albiac, F.,Kalton,N.:Topics inBanach space theory.GraduateTexts inMathematics 233.Berlin: Springer.
xi, 373 p. (2006)

2. Bishop, E., Phelps, R.R.: A proof that every Banach space is subreflexive. Bull. Am.Math. Soc. 67, 97–98
(1961)

3. Bishop, E., Phelps, R.R.: The support functionals of a convex set. Proc. Symp. PureMath. 7, 27–35 (1963)
4. Havin, V.P., Jöricke, B.: The uncertainty principle in harmonic analysis. Springer-Verlag, Berlin (1994)
5. Helson, H.: Harmonic analysis. Hindustan Book Agency, New Delhi (2010)
6. Kadets, V.: A course in functional analysis and measure theory. Translated from the Russian by Andrei

Iacob. Universitext. Cham: Springer. xxii, 539 p. (2018)
7. Kadets, V., Lopez, G., Martín, M., Werner, D.: Norm attaining operators of finite rank. In: Aron, Richard

M.; Gallardo Gutiérrez, Eva A.; Martin, Miguel; Ryabogin, Dmitry; Spitkovsky, IlyaM.; Zvavitch, Artem
(editors). The mathematical legacy of Victor Lomonosov. Operator theory. Advances in Analysis and
Geometry 2. Berlin: De Gruyter, 300 p. (2020), 157–187

8. Koosis, P.: Introduction to Hp spaces. CUP, Cambridge (1980)
9. Lindenstrauss, J., Tzafriri, L.: Classical banach spaces I: sequence spaces. Springer, Berlin (1977)

10. Lomonosov, V.: A counterexample to the Bishop–Phelps theorem in complex spaces. Israel J. Math. 115,
25–28 (2000)

11. Lomonosov, V.: On the Bishop–Phelps theorem in complex spaces. Quaest. Math. 23, 187–191 (2000)
12. Lomonosov, V.: The Bishop–Phelps theorem fails for uniform non-selfadjoint dual operator algebras. J.

Funct. Anal. 185, 214–219 (2001)
13. Noell, A.: Peak sets and boundary interpolation sets for the unit disc: a survey, Bull. London Math. Soc.

(2020) https://doi.org/10.1112/blms.12414

123

https://doi.org/10.1112/blms.12414


Modulus support functionals Page 11 of 11 52

14. Noell, A., Wolff, T.: On peak sets for Lip α classes. J. Funct. Anal. 86, 136–179 (1989)
15. Phelps, R.R.: The Bishop–Phelps theorem in complex spaces: an open problem. Lect. Notes Pure Appl.

Math. 136, 337–340 (1991)
16. Simon, B.: A comprehensive course in analysis. Part 4:Operator Theory, AMS, Providence, RI, 2015
17. Zygmund, A.: Trigonometric series, 3d ed., Cambridge Math. Library, CUP, Cambridge, (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Modulus support functionals, Rajchman measures and peak functions
	Abstract
	1 Introduction
	2 The original Lomonosov's example
	3 Modulus support functionals for the space c0
	4 Can a peak set for W+ bear a Rajchman measure?
	References




