CHARACTERIZATION OF THE GAUSSIAN DISTRIBUTION ON GROUPS
BY THE INDEPENDENCE OF LINEAR STATISTICS

G. M. Fel'dman UDC 519.2

1. In 1953, Skitovich [1] and Darmois [2] proved the following

THEOREM A. Let &4, ..., &g be independent random variables. If the linear forms L, =
aky +...+ aglkg and L, = B, &, +...+ BgEg, where all the coefficients are nonzero, are in-
dependent then the random variables are normal.

In this paper we will describe fully the locally compact Abelian groups onto which
this characterization theorem is carried over.

Let X be a locally compact separable Abelian metric group (referred to below as a
group), Y = X* be the group of its characters, (x, y) be the value of character y € Y on
the element x € X. A convolution of two distributions w and v, the characteristic function
of the distribution u and the distribution y are defined in the usual manner:

(e (B)= [p(E—)dv(@), 1= [(@ydu(), BE)=p(=E).

X X

Denote by Ey the singular distribution concentrated at the point x € X and by D(X) the set
of singular distributions on the group X. Denote by I(X) the set of translations of the
Maar distributions mg of the compact subgroups K of the group X and by o(u) the support of
the distribution .

If G is a closed subgroup of the group X, we denote by GL = {y € Y: (x, y) = 1 for
all x € G} its annihilator, by R, Z, T, Z{q) the groups of the real numbers, integers, rotat-
ions of a circle and roots of unity of the g-th power, respectively. We will utilize in
this paper some results of the structure theory of locally compact Abelian groups and
Pontryagin's duality theory (cf. [31).

Definition 1 [4]. A distribution y on a group X is called Gaussian if its character-
istic function can be represented as
(1) =(z, y)exp (-0 ()},

where x € X, ¢ (y) is a continuous nonnegative function on Y satisfying the equation

et y)ro(yi—y)=2[ey) T oly)]l, mn, =Y.

Denote by I'(X) the set of Gaussian distributions on the group X. As it is shown in
[4] if v € T(X), then o{y) is a coset of a certain connected subgroup in X.

Let n € Z. Consider the mapping X » X defined by the formula x » nx. The image of
the group X under this mapping will be denoted by nX.

The set of integers {aj} will be called admissible for the group X if for all j an#
{0} is fulfilled. Let £,, ..., &g be random variables with values in X. The condition
of admissibility of the set {a:}, when considering the linear form «,&, +...+ aglg, is a
group analog of the condition a4 # 0 for all j in the case when X = R.

THEOREM 1. Let &, ..., £g be independent random variables with values in the group
X and distributions u;, ..., Hg; {aj} and {Bj} be sets of integers admissible for X. As-
sume that the linear forms L, = oa;&; +...+ ogfg and L, = B £, +...+ BgEg are independent.
Then

i) if the group X is topologically isomorphic to a group of the form
(1)
X=R"+ D,
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where n 2 0 and 2 is a discrete group which contains no nonzero elements of a finite ord-
er then uy € rX), 1 «j<s,

ii) if 2X = {0}t, then uy € D(X), 1 <3j<s,

iii) if the group X is topologically isomorphic to the group X = Z(3), then either
uy €D (X), 1 £j<sor uj, = pj, = my for at least two distributions uj , uj,, the re-
maining M being arbitrary.

Theorem 1 is exact in the following sense.

THEOREM 2. Let the group X not be isomorphic topologically to the groups stipulated
in Theorem 1. Then there exist independent random variables £,, ..., &g with values in
X and with distributions u,, ..., Ug and alsc admissible for X sets of integers {as} and
{Bj} such that the linear forms {aj} and {Bj}, such that the linear forms L, = a,&, +...+

agtg and L, = §;&, +...+ BgEg are independent and j ¢ T(X), 1 <3 ¢ s.

Before proceeding to the theorems, we note that if £,, ..., §g are independent, ran-
dom variables with values in the group X and distributions p;, ..., Ug, then the linear
forms Ly = a;8; +...+ aghy and L, = B;&; +...+ Bslgs aqs Bj € 7 are independent if and
only if the characteristic functions ﬁj(y) satisfy the equation

S S 8
B;“’j (CC]-U -+ le]) =IT1 s (CCﬂé)I]]iMj (]3:;2)), u, Ve Y. (2)
J= i= i=
The following lemmas will be required in the sequel.

LEMMA 1. Let the group X be such that Y = X* is a connected compact group; &,, s
£g are independent random variables with values in X and distributions u;, ..., Ugs {aj},
{B4} are sets of integers different from zerc. Then if the linear forms Ly = a8, +...+
asgs and L, = By&; +...+ BgEg are independent, it follows that p: e D (X), 1 < j < s.

Proof. Two cases are possible.

1. Y # T. Then there exists a continuous monomorphism y: R + Y whose image W(R )
is dense in Y [3, p. 518]. Consider the contraction of the characteristic function ﬁj(y)

onto Y( R). Evidently, ﬂj{w(t)), t € R is a characteristic function on R satisfying equa-
tion (2). By Theorem A

—~

(9 (2)) = exp {—ast® + ib),
where a; 2 0, —=» < bj <w, 1 <3j<s,

Let V be an arbitrary neighborhood of zero in Y. Since ¥ is a monomorphism and @?ﬁ} =
Y, one can select a sequence tj + +», such that ¢(t,) € V for gll n. If & > 0 for some
j» then [uj(w(tn))[ = exp {— 4 ty’} > 0 as t, > += and this contradicts the continuity of
ui(y). Hence, ¢; =0, 1 < j < s. Therefore, ‘Mj(¢(t))l =1, t € R and since (R ) is
dense in Y, we have [uj(y)i =1forye¥, 1 <i<s. Hence uj(y) = (x5, ¥), i.e., uy =
Eg.» x5 € X. The lemma is thus proved in the first case.

2. Y = T. Then X = Z  Without loss of generality, it can be assumed that X = Z and
Ui can be viewed as a distribution on the group with 2w-pericdic characteristic functions
aiso satisfying Eq. (2). By Theorenm A, ﬁj(t) =exp{—a t? + ibst}, a; 2 0, — < by
Since the functions p;(t) must be 2m-periodical, it follows that a; = 0, bje Z, i.e.,
Uy € DLy, 1 < j<s. The lemma is thus proved.

< o,

LEMMA 2. Let u be an arbitrary distribution on the group X, H be a closed subgroup
in Y = X*. 1If the characteristic function 1(y) = 1 for all y € H, then o{u) ¢ Hi.

We omit the proof of this well-known assertion in view of its simplicity.

Proof of Theorem 1. i) It is sufficient to prove the theorem for the group X = R +
D . Set

W=, 1<j<s (3)

tSee [3, p. 523] for a description of groups all of whose elements which differ from zero
are of order g, where q is a prime number.
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It follows from Eq. (2) that it is satisfied — along with the characteristic functions
ﬂj(y) — also by the characteristic functions Gj(y), 1 <j<s. Note that Gj(y) 20, ye
Y and consider the contractions of the functions V:;(y) onto the subgroup H = £* Since H
is a connected compact group, it follows from Lemma 1 that V;(y) = 1, y € H. By Lemma 2
o(vj) c HL =R"” and then it is easy to derive from Theorem A that vy € T(R"). It follows
from Eq. (3) that the distribution uj can be replaced by its displacement uj' = By ok EXj’
xj € X, so that vy = pj' % ﬁj' and o(uj') c R". From here, applying Cramer's theorem on
the decomposition of the Gaussian distribution in R” [5, p. 251] we conclude that pj' €

T{R"). Then uy € r(x¥), 1 < j < s which proves the theorem in case i).

ii) Because 2X = {0}, the admissible sets for X will be the sets consisting of the
odd numbers. Since also 2Y = {0}, Eq. (2) becomes

S S s
w4 o) =TT I ae) weey. ()
j=1 i=1 =1

Setting in (4) u = v =y, we obtain that [p3(y)| = 1 on Y. Hence, uj(y) = (x5, y), i.e.,

uy = EXj’ 1 < j<s. For the case ii) the theorem is also proved.

iii) We can assume without loss of generality that X = Z.(3). Since the admissible
sets for the group Z (3) consist of integers not divisible by 3, it is easy to see that
one can assume that L, = &;, ..., &g and L, = &, +...+ £g — Eg4; —...— Eg. Equation (2)

becomes
S

s —_—

wy(w—v) =TT w @) I w; ) I wi (=) (5)
+1 =1 i=1 i

=141

l —
I+

=1 =1

Set ny = gy +...+ &g, Ny = Eg4; t...+ Eg. The distributions of the random variables are
1

S

N5 Np. The characteristic functions of the distributions v; = « U3, vy = = Uy evid-
=1 =141

ently satisfy the equation
w1+ o) Ve — v) = vi () va (1) vi (V) va(—v). (6)

As it was proved in [6] it follows from (6) that v,, v, € I(Z (3)). Therefore, if v, €
2(Z (3)), Eq. (6) implies that v, € D(Z (3)) also and then we also have that uj € D(Z x
(3)), 1 £ j ss. If, however, v, = My, , it then follows from Eq. (6) that v, = myy,
also. Now note that if y, % Yy, = m,, on the group X =:Z (3) then at least one of the
distributions Yj = ML . It is then easy to conclude from (5) that the remaining distrib-
utions Uy can be arbitrary. Theorem 1 is thus proved.

The following lemmas are required for the proof of Theorem 2.

LEMMA 3. Let K be a compact group such that 2K = XK, K # Z (3). Then there exist in-
dependent random variables £j with values in K and distributions Ui, 1 € j € 4, such that
thé linear forms L, = §, + £, + §3 + &, and L, = §, + £, — £3 — £, will be independent and
B3 ¢ I(K) « T(K), 1 < j < 4.

Proof. Denote f(y) = mg(y), y € Y = K*. It is easy to verify that the function f(y)
satisfies the equation

flutv)f(u—v)=F) w3 uveY.

Choose y;, y, € Y such that the elements {y,, ¥,, —V1, —y,} will be pairwise distinct
and consider on the group K the functions

Evidently, pj(x) > 0. Denote by uj the distribution on the group K with the density pj(x)
(with respect to mg). It is easy to see that u; % W, = mg. Characteristic functions 1, (y)
and 1i,(y) satisfy the equation

(1 ) o (o ) (1 — 0) o — v) = o () g () [ (0) 12T (0) 1% (7)
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u, veY. Let Ej be independent random variables with the values in the group K possess-
ing the distributions His 1 <3js 4, where g = ug, My = U,. It follows from Eq. (7) that
the linear forms L, =&, + &, + &, + &, and L, = &, + £, ~ &5 — £, are independent. It

is evident that By ¢ I(K) % I'(X). The lemma is proved.

Let q be a prime number. Denote by Z (q®) the multiplicative group (in the discrete
topology) of the roots of unity whose powers are powers of the number gq. Denote by 4, the
group of characters of the group Z (q*) (see, e.g., [3, Sec. 25] for more details about
the group Aq).

LEMMA 4. Let X = Aq- Then there exist independent random variables £,, £, with the
values in A5 and with the distributions u;, u,, such that the linear forms L, = q&, ~ &,
and L, = £, + g£, are independent. It is evident that p,, u, ¢ I(Aq).

Proof. Imbed the group Z (q) into Z (g®) and consider the functions

D@ v,
W0, yez), j=12,

on the group Z {q*) where Gj(y) are arbitrary characteristic functions on the group Z {g).
Functions fj(y) are continuous, positive definite {7, p. 330] and by the Bochner—Khinchin
theorem are characteristic functions of certain distributionsz{-on the group Aq. Let £3
be a random variable with values in Aq possessing the distribution Hj. To verify that the
linear forms L, = qf, — £, and L, = £; + qf, are independent, it is sufficient to verify
that the functions f,(y) and f,(y) satisfy Eq. (2) which becomes

flqutv)fo(—utgquy=fi(qu) fo(—u) i (v) [2(qv), u, v=Z(g7). (8)

If u, v € Z (q), relation (8) is evidently fulfilled. 1If either ue Z (q), v ¢ Z (q) or
u¢ Z (q), veZ(q), then the left-hand and the right-hand sides in Eq. (8) vanish. Let
u, v ¢ Z (q). Thenthe right-hand side in Eq. (8) vanishes. If qu+ v, —u + gv € Z (q),
then (g? + 1)u € Z (g) and hence u € Z {q) which contradicts the assumption. Thus, either
qu + v ¢ Z (q) or —u + qv ¢ Z {q) and the left-hand side of Eq. (8) also vanishes. This
proves equality (8) and hence the independence of the linear forms L, and L, is estab-
lished. It is also evident that if vy, v, ¢ I(Z (q)), then u;, u, ¢ I(8q). The lemma is
thus proved.

LEMMA 5. Let G be a closed subgroup of the group X, y be a distribution on G. If
v € I(G) & I(G), then p ¢ I(X) » I'(X).

The proof of this lemma is self-evident and is thus omitted.

Proof of Theorem 2. Assume that the group X is not topologically isomorphic to the
groups stipulated in Theorem 1. The following cases are possible.

1. The group X contains a subgroup ¢ *Z(2). Let &, and &, be independent random
variables with values in G and the distributions u,, u, ¢ I(G). Since the group is dis-
crete we have T'(G) =2 (G) and hence I(G) % I'(G) = I(G). From Lemma 5 u,, u, ¢ I{(X) » r{x).
As it is easy to see, the linear forms L, = 2§, — £, and L, = &, + 2£, are independent and
the sets {2, -1}, {1, 2} are admissible for the group X since by the condition 2ZX # {0}.

2. The group X contains the subgroup G = Z (3). If 3X # {0}, let £, and £, be inde-
pendent random variables with values in G possessing the distributions p,, u, ¢ I(G).
Since the group G is discrete, it follows that I'(G) @ (G); therefore I(G) % T'(G) = I(G).
Lemma 5 implies that u,, p, ¢ I(X) % I'(X). The linear forms L, = 3§, ~ &, and L, = £, +

3, are evidently independent and the sets {3, ~1}, {1, 3} are admissible for the group X.

If 3X = {0}, then since X # Z (3), the group X contains the subgroup K = Z (3) +Z(3).
The existence of the required random variables Ej and the linear forms L,, L, is now as-
sured by the Lemmas 3 and 5.

3. Group X contains the subgroup K = Z (q) for some prime q > j. The existence of
the required random variables £ and the linear forms L;, L, also follows from Lemmas 3 andS5.
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4. Group X contains no nonzero elements of a finite order. From the structure
theorem for locally compact Abelian groups, each group X is topologically isomorphic to the
group of the form X = R"+ G, where n 2 0 and the group G contains a compact open subgroup
K (cf. [3, p. 493]). Since the group is not topologically isomorphic to the group of the
form (1) and contains no nonzero elements of a finite order, it follows that K # {0}. How-
ever, the compact group K containing no nonzero elements of a finite order is topological-
1y isomorphic to the group of the form

N Bl
K~ () + & A (9)

where %, is the group of characters of the group of rational numbers Q in the discrete top-
ology, # is the set of all the prime numbers, ® %, are cardinal numbers [3, p. 514]. We
now observe that for any prime q the group I contains the subgroup G, = A;. Since the
group 4q is completely disconnected, T(dg) = D (Ag) and hence I(Ag) x F(Aq§ = I(Ag). The
existence of the required random variables s and the linear forms L,, L, now follows from
Lemmas 4 and 5. The proof of Theorem 2 is thus completed.

2. Now let &;, ..., &g be independent random variables with values in the group X
and the distributions u;, ..., ug; {aj}, {Bj} will be admissible sets of integers for the

group X. As we have seen in the proofs of Theorems 1 and 2 the independence of the linear
forms L; = 0,8, +...+ agfg and L, = B,&; +...+ BgEg (unlike the situation when X = R ) in

general does not imply that the characteristic function ﬁj(y)+ does not vanish. In Theorem

3 presented below, we provide a complete description of the groups X for which the independ-
ence of the linear forms L, and L, under the additional condition fi;(y) # 0 for all y € Y,

1 <3< s implies that nj € T(X), 1 <3< s.
THEOREM 3. Let &;, ..., &g b§ independent random variables with the values in group
X and distributions pj such that II' ﬁj(y) # 0 for all y = Y; {ay} and {B4} will be admis-

sible for X sets of integers. In order that the independence of linear forms L, = a,£, t+
. + agfg and L, = &, +...+ BgEg imply that uy € rX), 1 € j < s it is necessary and

sufficient that the groug X either contains no nonzero elements of a finite order or gX =
{0}, where q is a prime.

To prove the theorem the following lemmas will be required.

LEMMA 6. Let X be a compact group o, B € Z , oK = K, f(g) be a continuous nonnega-
tive function on K. Then the inequality

j f o + Bo) dmygs (u, v) < j frow) dmoa (u, v) + \ { (Bv) dmya(u, v), (10)
K2 K2 K2

is fulfilled with the equality valid if and only if f(g) = 0 for g € BK.

Proof. Since oK = K, it is easy to verify that

ﬁif(ocu + po) dma (. ) = | 1(8) dmxc (o), (1)
{ (o)) dmys (u, v) = [ 1 (g) dmx (g)- (12)
x? K

Since f(g) 2 0 on K, inequality (10) follows from (11) and (12). Moreover, if this in-
equality becomes an equality then f(gv) = 0 on K, i.e., f(g) = 0 for g € gK.

LEMMA 7. Let X = Z (), &1, «..» £g be independent random variables with thesvalues
in Z (¢®) and distributions uy such that ﬁj(y) >0 for all y € Ag, 1 € j <5, and 11 ﬂj x
i=1

+Proofs of Theorems 1 and 2 imply that the group for which the independence of the linear
forms L, and L, imply that the characteristic functions ﬂj(y) do not vanish are either
groups of the form (1) or groups for which 2X = {0}.

$Since the group X such that gX = {0} is completely disconnected, it satisfies I'(X) =2 (X).
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{(y) =1 only if y = 0; {aj}, {Bj} be sets of integers different from zero. Then the lin-
ear forms L, = a8, +...+ agfq and L, = B.&; +...+ BgEg cannot be independent.

Proof. Replacing, if necessary, the random variables Ej by the random var*ables Ej” =

ds j&5 we can assume that the numbers o4 and By are mutually prlme and the condition II
i=1
UJ(y) = 1 is not violated only for y = 0. Indeed, let the equality uJ(dJy) =1, 1<3<s
be fulfilled for some y € Aq. Then ﬁj(dl, ey dsy} =1, 1< j<s. Hence, dy, ..., dgy =
0 by the conditions of the lemma and since the group hgq contains no nonzero elements of a

finite order, it follows that y = 0.
Set £i(y) = —lnﬁj(y). We then obtain from Eq. (2)

g fi(au + B) = gl fi(au) + é}lfj (Bv)-

Integrating this equality over the group Aq and interchanging the orders of integration
and summation we have

& 8

25 fi (o + By0) dm o(u, v) = Zf o) dm o (u, v) + 2§ 7By )dm s (4, v) (13)
=1 »=1 =
2 A Ag 7 Ag 113
Since the numbers a; and By are mutually prime, at least one of these numbers is not divis-
ible by q. Therefore elther ajiq = Ag or Bjaq = Ag. Lemma 6 implies from Eq. (13) that
in inequality (10) for f(y) = fJ(y), < j £ s equality is valid. Hence 11 ﬁj(y) = 1 for
8 =1

e (I{aﬁh) bq # {0} which contradicts the condition.
j== K

LEMMA 8. Let X = Z (q), where g is a prime number, &,, ..., &5 will be independent
random variables with values in Z (q) and distributions uj such that ﬂj(y) > 0 for all ye

7Z (q), 1 <j< s and ]]- uJ(y) = 1 for only y = 0, {03}, {Bj} will be sets of integers
=1
none of which is d1v151ble by g. Then the linear forms L, = 0§, +...% agés and L, = §;&,+

. + Bgfg cannot be independent.
The proof is completely analogous to the proof of Lemma 7 and is this omitted.

LEMMA 9 [8]. Let u, u,, u, be distributions on the group X. In order that p & I'(X),
= U; % Y, imply the inclusion By € r(f), j=1, 2, it is necessary and sufficient that
the group X contain no subgroup topologically isomorphic to T.

An element x, € X, x, # 0 will be called infinitely divisible if the equation nx = %,
possesses a solution in X for an arbitrary large positive integer n.

LEMMA 10 [9]. Let the group X possess the property: any quotient group of the group
Y = X* possesses an infinitely divisible element. Then if the characteristic function 1(y)
of a distribution y on X satisfies the conditions: 1) ¥(y) > 0 for all y € Y; 2) Y(ny) =
(Y(y))", n =12, 3, ..., then y € I'(X).

Proof of Theorem 3. Necessity. Assume that the group X contains an element x, of
order q where q is a prime number but gX # {0}. Let G be a subgroup in X generated by the
element x, and £,, £, be independent random variables with values in G possessing nondegen-
erate distributions u,, p, such that 1,(y)u,(y) # 0 for all y € G*. As it is easily seen,
the linear forms L; = q¢; — £, and L, = &, + q&, are independent and the sets {q — 1} and
{1, q} are admissible for the group X. Evidently, pj #1(X), =1, 2.

Sufficiency. Assume that the group X possesses no nonzero elements of a finite order.
It is necessary to prove that if the characteristic functions of distributions p; satisfy
(2) then uy € r(X), 1 < j < s. Evidently, the characteristic functions of distribu-

tlons Vj = M3 % uj also satlsfy Eq. (2) but here v (y) > 0 for all y € Y. Since the group
X contains no subgroup topologically isomorphic to T, in view of Lemma 9 it is sufflclent
to verify that vy € r(X), 1 £ j < s. We can thus assume from the very beginning that uJ x

(y) >0 for all ye ¥, 1 ¢ j £ s. In view of Lemma 2 one can also assume that j[I u {y) =
i=1
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£l
1 only for y = 0. We first verify that in this case X = R" +(Zs) , wheren>0 and is a
cardinal number.

By the structure theorem for locally compact Abelian groups, the group X is topolog-
ically isomorphic to the group of the form X = R* + G, where n > 0 and the group G contains
a compact open subgroup K. Let Y = R" + H, H = G*. Since Cy is a connected compact group,
Lemma 1 implies that Cg = {0}, i.e., the group H is completely disconnected. Since the
group K contains no nonzero elements of a finite order, K is topologically isomorphic to
a group of the form (9) and then Cy = R" + (T )se . Since the group X contains no nonzero
elements of a finite order, Cy is a direct summand in X, i.e., X = Cyx + A [3, p. 529].

The group A is now completely disconnnected. Denote A* = B. Since the group A is com-
pletely disconnected, group B consists of compact elements [3, p. 496] and since the group
B is topologically isomorphic to a subgroup in H, group B is completely disconnected be-
cause H is such a group.

Consider an element b € B and let Mp be a closed subgroup generated by b. Properties
of the group B imply that M} is a zero-dimensional compact monotonic group. Therefore,
(cf. [3, p. 517]) the group My is topologically isomorphic to the direct sum

My~ & F,
=P ! (14)
where #is the set of prime numbers and each one of the groups Fy is either {0} or Z (q%q)
(r is a positive integer) of Ay;. In view of Lemma 7, the case when F, = A, for at least
one q is impossible. In view og Lemma 8, the set of q such that the subgroup Fq =Z (q¥q)

can occur in the decomposition (14) for all possible elements b € B is finite and consists
of divisors of certain numbers from the set {aj, Bi}i=15. If the exponents r, are jointly
bounded, then for some n € Z the relation nB =" {0} 15 valid which implies that nA = {0} is
also valid. This is, however, impossible since the subgroup A < X contains no nonzero
elements of a finite order. Hence the group B contains subgroups topologically isomorphic
to Z (q¥q) with an arbitrary large rq for at least one q. We fix such a q. Let aj =

Qa‘a. . = gy . . . = mi . . . . . >
q*j a; , BJ q™j bJ, ny mln{lj, mJ}, Lis mj 2 0 Choose n :Eii {23, mJ}, such that

the group B possesses a subgroup F tooglogically isomorphic to Z (qm). Set fJ(y) = —ln x
ﬁj(y) and note that by the condition ;2 fj(y) = 0 for y = 0 only. Taking logarithms on
J=1

both sides of Eq. (2) we integrate the equality obtained over the group F? with respect to
the measure dmp2 interchanging the order of summation and integration. We have

s‘
3L 3 hewitn-3L 3 paw+SL 3 s (1)
=17 (uvep? i=1 utmch =19 (L nert

It is easy to verify that

2 f](a’u_l_ﬁ]v)"—q 2’ f](y>

(u,v)e

yediF

2  filau) = g™ 2 7 ()
(u‘U)R:F yegq JF

2 5 =¢"" 3 L.
(u,v)sF? yr—:—qu'F

Note also that in view of the choice of number n, relations q%j + F # {0}, g®j - F # {0},
1 <j<s.

It follows from the above that equality (15) can be rewritten in the form

2. Ty 2 Ty Z y)+2_ 1 2 e (16)

=1 9 =1 9

yeq iF 9=1 q ved'iF yediF
Since either n: = 2 or nj = my, equality (16) is impossible. We have thus shown that B =
{0} and hence also {0?, i. e , X = Rn-+(20) The problem is thus reduced to a proof
of the theorem for a group X of the form 1nd1cated above.
Observe that Y = IV1+~Qm* . Since for any integer m, X and Y are groups with single-

valued division by m, utilizing Lemma 9 we can, as is the case in the classical situation,
assume, without loss of generality, that ay = 1, 1 £ j £ s and all Bj are rational and dis-
tinct.
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Fix an arbitrary element y, € Y and take the subgroup L(y,) = {y € Y: y = (n/n)y,,
m, ne Z n# 0}. Evidently, L(y,) = Q. Set by(m/n) = fj((m.n)yo) and consider the con-

traction of Eq. (2) onto L(y,). Then the functions wj(r), re Q 1< j< s satisfy the
equation :

S

E s+ By =AW + B@), uwreq, (17)

vhere A{u) = g;, wi(u), B(v) =,£§‘ wj(ij). Further arguments, up to the notation, coin-
cide with the proof of the Skitovich—-Darmois theorem by the method of finite differences

(see, e.g. [10, pp. 185, 186]1). All the increments of the arguments should be considered
to be rational here. We will obtain that each function wj(u) satisfies the equation

A w) =0, zeq, (18)

where h is an arbitrary rational number and Ay is a finite difference operator Apf{u) =
f(u + h) — £(u).

[For completeness we present the corresponding arguments for the case s = 2. Equation
(17) becomes

Pr(u T Biw)+ e (u+Bev)=A(u)+ B(v). (19)

We increment u and v by the amounts h, k € Q such that h + p,k = 0. Since B, # 8,, it fol-
lows that % = h + g,k # 0. Then

Pr(u+ B+ 1)+ go{u+ By =A(u+ )+ B(v+k). (20}
Subtracting Eq. (19) from Eq. (20) we have

Yr(u+ Biw+1)— g (u+ Biv)=Ad (u)+ AB(v). {21)
Setting v = 0 hére we obtain

Pr(u )=t (u)=AA () + AB(0). (22)
Subtracting Eq. (22) from Eq. (21) and setting v = /8, we arrive at
(1 20) = 2w+ D)+ (1) = AB(UB) — AB(0),

ice., 8g%P,(u) = €(2) and hence Ag2y,;{(u) = 0. We observe now that £ = h(g, — §;)/8, is
an arbitrary rational number since h is arbitrary.]

We rewrite Eq. (18) in the form
841
kgo(— 1 FHICE W (u + kh). (23)

Fix h € Q and denote Ly = {th}g=-o" as the subgroup generated by h. Consider Eq. (23) on
Ly and note that if wj(u) =0 for any u € Z 0 Ly, then wj(u) = 0 on Ly. Indeed, any sol-
ution of Eq. (23) on Ly is of the form wj(u) = ¢, + c,u +...+cgu¥, wherec; are constants
[11, p. 322]. Since the set Z 0 Ly, is infinite ¢, =...= ¢g = 0.

Now note that any polvnomial of degree not higher than s satisfies Eq. (23}. We
choose the polynomial @;(u)=ag+a; +... +au® such that y;(p) =¢; {p) for p =20, 1, ..., s.
Set éj(u) = wj(u) —; (u). The function 5j(u) also satisfies Eq. (23) for any h € @ and
conditions Gj(p) =0, p=0, 1, ..., s. Therefore setting in Eq. (23) h =1, u = 0, 1,

. we successively obtain that 6;5(u) = 0 for any u € Z  As it was mentioned above, this
implies that Gj(u) = 0 for any u € Ly, where h is an arbitrary rational number, i.e., Gj X
(u) =0 on Q Thus the function wj(u) is a polynomial of degree at most s on @ . There-
fore the functions Zj(u) = exp{wj(u)} are continuous on the group G in the topology in-
duced on Q from Q and hence are extended up to positive definite functions lj(u) on the
group R satisfying Eq. (2). By Theorem A, 2;(u) = exp {—d ju 2}, ue R In particular, for
any integer n the equality 25 (nu) = (2 (u))n is valid. Setting in it u = 1 we obtain

343



ﬂj(nyo) = (ﬁj(yo))nz. Since y, is an arbitrary element of Y the conditions of Lemma 10
are satisfied. Hence pj € r{x).

Consider now the case where gX = {0}, where q is a prime number. Then also qY = {0}.
Since the sets {aj} and {Bj} are admissible neither aj nor Bj is divisible by q. Replac-
ing the distribution uj by uj x ﬁj, we may assume that ﬂj(y) >0 forallye¥Y, 1 <3js<s.
Consider now the contraction of Eq. (2) onto some subgroup G ¢ Y generated by an arbitrary

element v, € Y, y, # 0. Evidently G = Z (q). It follows from Lemma 8 that E = ¥y G x
H}:j(y)=1 #{0}. Hence E = G, i.e., i(y) = 1 on G, 1 < j < s. This implies that ﬂj(y) =1
j=1

on Y, i.e., Vj eD(X) cT(X), 1 £ j <s. The theorem is thus proved.

Remark 1. From a complete description of groups X for which the Cramer theorem on
the decomposition of a Gaussian distribution is valid presented in paper [8] [the theorem
states that if the sum £, + £, of independent random variables possesses a Gaussian dis-
tribution so do the components &, and &, (cf. Lemma 9)] it follows that this class of
groups is substantially larger than the class for which the Skitovich-Darmois theorem is
valid (cf. Theorem 1). The situation does not change if we require additionally that the
characterisgic functions ﬁj(y) of the distributions under consideration also satisfy the

condition JJ ﬂj(y) # 0 for all y € Y (cf. Theorem 3).
=1

As in the case where X = R the Cramer theorem on arbitrary groups follows from the
following particular case of the Skitovich—Darmois theorem.

THEOREM B. Let &,, £,, &3, &, be independent random variables with values in the
group X and distributions u,, u,, Mz, M, and, moreover, let 1) W, = Wz, M, = M3 2) H,(y)x
H,(y) # 0 for any y € Y. Then if the linear forms L, = &, + £, + £, + £, and L, = &, +
£, — &, — &, are independent, p,, p, € I'(X).

Proof. Let &,, £, be independent random variables with distributions wu,, u, and let
the sum £, + £, possess the Gaussian distribution, i.e., y; % u, € [(X). Selecting £, and
£, to have the same distribution as &, and §,, respectively (the random variables obtained
€15 £,5, £, £, are independent) we observe that the linear forms L, = (&, + £,) + (&3 +
£,) and L, = (§, + £,) - (§, + £,) are independent. By Theorem B y,, u, € I'(X).

In turn, Theorem B follows from the Cramer theorem. To prove this, we note that the
independence of the linear forms L; and L, is equivalent to the fact that the characteris-
tice functions 11,(y) and §,(y) satisfy Eq. (7).

Set Yy = Uy % M, % H; % Mp. Then the characteristic function Y(y), as it follows from
Eq. (7) satisfies the equation

Tt o) 1(u—v)= W), uve=Y.

Condition 2 implies that Y(y) > 0 for all y € Y. Setting ¢ (y) = InY(y), we observe (cf.
definition 1) for y € I'(X). Then by Cramer's theorem y,, u, € I'(X).

Thus the classes of groups on which the Cramer theorem and Theorem B is valid are the
same, 1f, however, in Theorem 2 we relinquish condition 2; then, as Lemma 3 indicates, an
analogous assertion is not valid.
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DOMAINS OF VALUES OF SYSTEMS OF COEFFICIENTS OF BOUNDED
TYPICALLY REAL FUNCTIONS IN THE DISK

V. V. Chernikov UDC 514.54

Let Tg denote the class of typically real functions in the disk E = {z: |z| < 1},
i.e., of the functions

Fz)y=z+be2?+ ...+ 2"+ ... (D

that are regular in E and satisfy in E the conditions ImF(z) = 0 for Imz = 0, ImF(z) x
Imz > 0 for Imz # 0. Let TR(M) denote the class of the functions

H)=z+ 22+ ...+ ez +...€Tx (2)

such that [f(z)f < M for z € E, where M is a fixed number such that 1 < M < o,

In [1] sharp estimates of the coefficients c¢,, c¢;, ¢, have been obtained with the
help of integral representation in the class Tgr(M).

In the present article we find the domain of values of the system {c,, ..., ¢n} in
the class Tg{M); the method to be used is based on the extremal properties of functions of
the class Ty.

The following integral representation for the class of typically real functions is
known [2; 3; 4, p. 516 and 517]: a function F(z) belongs to Ty if and only if it admits
in the disk E the representation

1
F(z) = ji—-——i-——~da(w, (3)

A 1 — 2tz +2°

where o{t) belongs to the class A[—1, 1] of nondecreasing functions on [—1, 1}, such that
a(l) — a(~1) = 1. Using the known (see [5, p. 161; 6, p. 172]) expansion {(for ~1 < t < 1)

z
1——2tz—§—z2

EUn_l(t)z", ze= B, (4)
. Rl
from (4), (3), and (1) we get the following integral representation of coefficients for
each function F(z) € Ty:
i
bn——: ﬁ Un_l(t)da(t), n = 1, 2, e s (5)
-1
In Eq. (4) and Eq. (5) the symbols U,(t), t € [~1, 1] denote Chebyshev polynomials of sec-
ond order such that [5, p. 152; 6, p. 178]

Us(t)=1, Ui(t)= 2t, Unp1 ()= 2Un(t)~Unor (), n=1, 2, .... (6)

Tomsk. Translated from Sibirskii Mathematicheskii Zhurnal, Vol. 31, No. 2, pp. 151-
196, March-April, 1990. Original article submitted October 15, 1987.
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