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i. In 1953, Skitovich [i] and Darmois [2] proved the following 

THEOREM A. Let El, ---, ~s be independent random variables. If the linear forms h I = 
e1$1 +.'-+ ~s~s and L 2 = Blgl +-..+ Ss~s, where all the coefficients are nonzero, are in- 
dependent then the random variables are normal. 

In this paper we will describe fully the locally compact Abelian groups onto which 
this characterization theorem is carried over. 

Let X be a locally compact separable Abelian metric group (referred to below as a 
group), Y = X* be the group of its characters, (x, y) be the value of character y �9 Y on 
the element x �9 X. A convolution of two distributions D and v, the characteristic function 
of the distribution D and the distribution ~ are defined in the usual manner: 

( ~ * ~ ) ( Z ) = . [ ~ ( E - - x ) d v ( x ) ,  ~ ( U ) =  [ (x, y) d~t (x), ~(E)=~(--E). 
x 

Deno t e  by E x t h e  s i n g u l a r  d i s t r i b u t i o n  c o n c e n t r a t e d  a t  t h e  p o i n t  x �9 X and by D(X) t h e  s e t  
o f  s i n g u l a r  d i s t r i b u t i o n s  on t h e  g roup  X. Deno te  by I ( X )  t h e  s e t  o f  t r a n s l a t i o n s  o f  t h e  
Maar d i s t r i b u t i o n s  m K o f  t h e  compac t  s u b g r o u p s  K o f  t h e  g roup  X and by a ( ~ )  t h e  s u p p o r t  o f  
the distribution ~. 

If G is a closed subgroup of the group X, we denote by G i = {y �9 Y: (x, y) = 1 for 
all x �9 G} its annihilator, by R, Z, T, Z(q) the groups of the real numbers, integers, rotat- 
ions of a circle and roots of unity of the q-th power, respectively. We will utilize in 
this paper some results of the structure theory of locally compact Abelian groups and 
Pontryagin's duality theory (cf. [3]). 

Definition 1 [4]. A distribution 7 on a group X is called Gaussian if its character- 
istic function can be represented as 

~ ( y ) = ( x ,  y)exp {--~(y)}, 

where  x �9 X, ~ ( y )  i s  a c o n t i n u o u s  n o n n e g a t i v e  f u n c t i o n  on Y s a t i s f y i n g  t h e  e q u a t i o n  

~ ( y i + Y 2 ) + ~ ( y l - - y 2 ) =  2 [ '~ (y l )+  ~(Y2) I, Y,, y2 ~ Y. 

Denote by r(X) the set of Gaussian distributions on the group X. As it is shown in 
[4] if 7 �9 F(X), then 0(7) is a coset of a certain connected subgroup in X. 

Let n �9 Z. Consider the mapping X + X defined by the formula x + nx. The image of 
the group X under this mapping will be denoted by nX. 

The set of integers {aj} will be called admissible for the group X if for all j ~X 
{0} is fulfilled. Let ~l, .... ~s be random variables with values in X. The condition 
of admissibility of the set {aj}, when considering the linear form ~i~i +..-+ asSs, is a 
group analog of the condition aj ~ 0 for all j in the case when X = R. 

THEOREM i. Let ~i, --', ~s be independent random variables with values in the group 
X and distributions DI ..... Ps; {~j} and {~j} be sets of integers admissible for X. As- 
sume that the linear forms L l = ~igl +'''+ ~S~S and L~ = ~i~i +-.-+ ~s~s are independent. 
Then 

i) if the group X is topologically isomorphic to a group of the form 
(i) 

X ~ R ~ +!~), 
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where n _> 0 and ~) is a discrete group which contains no nonzero elements of a finite ord- 
er then Dj e F(X), 1 <- j <- s, 

ii) if 2X = {0}%, then Zj e ~(X), 1 <- j <_ s, 

iii) if the group X is topologically isomorphic to the group X : Z(3), then either 

Dj e~ (X), I -< j <- s or Zji = ~J2 = mX for at least two distributions Djl, ~J2' the re- 

maining Zj being arbitrary. 

Theorem 1 is exact in the following sense. 

THEOREM 2. Let the group X not be isomorphic topologically to the groups stipulated 
in Theorem i. Then there exist independent random variables ~i, -.., ~s with values in 
X and with distributions ~i ..... ~s and also admissible for X sets of integers {aj} and 
{~j} such that the linear forms {aj} and {$j}, such that the linear forms L i = %~i +o~ 

~sgs and L 2 = ~i~z +.-.+ Ss~s are independent and ~j r I(X), 1 ~ j <_ s. 

Before proceeding to the theorems, we note that if gi, "'~ gs are independent, ran- 

dom variables with values in the group X and distributions '#i, "'~ ~s, then the linear 

forms L i = ~i%i +...+ asgs and L 2 = ~i~i +~176 ~sgs, aj, ~j e Z are independent if and 

only if the characteristic functions ~j (y) satisfy the equation 

J=i 9=I ]=i 

The following lemmas will be required in the sequel. 

LEMMA i. Let the group X be such that Y = X* is a connected compact group; ~i .... 
gs are independent random variables with values in X and distributions Di, .... Ds; {~j}, 
{$~} are sets of integers different from zero~ Then if the linear forms L i = ~gi +.-.+ 
~s~s and L~ = $igi +...+ BsSs are independent, it follows that D-. e ~ (X), I < j < s. 

Proof. Two cases are possible. 

i. Y r T. Then there exists a continuous monomorphism 4,: R ~ Y whose image ~(}() 
is dense in Y [3, p. 518]. Consider the contraction of the characteristic function pj(y) 

onto ~(R). Evidently, ~j(~(t)), t e R is a characteristic function on R satisfying equa- 
tion (2). By Theorem A 

~ ( ~  ( t ) )  = exp {.-a~t ~ + ib~t}, 

where a~ _> 0, -~ < bj < ~, I <_ j <- s .  

Let V be an arbitrary neighborhood of zero in Y. Since ~ is a monomorphism and ~2(R) = 
Y, one can select a sequence t n + +~, such that ~(t n) ~ V for all n. If a~ > 0 for some 
j, then I~j(~(tn))I = exp{-a~ tn 2} + 0 as t n § +~ and this contradicts the continuity of 
~j(y). Hence, a~ = 0, i <_ j <_ s. Therefore, I~(~(t))l ~ i, t e R and since ~(:R) is 
dense in Y~ we have IBj(y) I ------ 1 for y e Y, 1 <_ j~ ~ s. Hence ~j(y) = (xj, y), i.e., ~i = 
Exj, xj e X .  The lemma is thus proved in the first case. 

2. Y : T. Then X : Z. Without loss of generality, it can be assumed that X = Z and 
~j can be viewed as a distribution on the group with 2z-periodic characteristic functions 
also satisfying Eqo (2). By Theorem A, ~j(t) = exp{- ~r t = + ibjt}, a~ -> 0, -~ < bj < ~. 

Since the functions ~j(t) must be 2~-periodical, it follows that a~ = 0, bj e Z, i.e., 
Dj e ~)(Z) , 1 g j <_ s. The len~na is thus proved. 

LEMMA 2. Let D be an arbitrary distribution on the group X, H be a closed subgroup 
in Y = X*. If the characteristic function ~(y) = 1 for all y e H, then o(~) c H i . 

We omit the proof of this well-known assertion in view of its simplicity. 

Proof of Theorem i. i) It is sufficient to prove the theorem for the group X = l~ ~ + 
o Set 

tSee [3, p. 523] for a description of groups all of whose elements which differ from zero 
are of order q, where q is a prime number. 
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It follows from Eq. (2) that it is satisfied - along with the characteristic functions 
~j(y) - also by the characteristic functions ~j(y), 1 ~ j ~ s. Note that ~j(y) ~ 0, y e 

Y and consider the contractions of the functions ~j(y) onto the subgroup H = 9*. Since H 
is a connected compact group, it follows from Lemma 1 that ~j(y) ~ i, y e H. By Lemma 2 
o(vj) c H i =R ~ and then it is easy to derive from Theorem A that vje F(Rn). It follows 

from Eq. (3) that the distribution Dj can be replaced by its displacement Dj' = Dj , Exj, 

xj e X, so that vj = Dj' , ~j' and o(Dj') c R n. From here, applying CramSr's theorem on 

the decomposition of the Gaussian distribution in R ~ [5, p. 251] we conclude that Dj' e 

F(Rn). Then Dj e F(X), 1 ~ j ~ s which proves the theorem in case i). 

ii) Because 2X = {0}, the admissible sets for X will be the sets consisting of the 
odd numbers. Since also 2Y = {0}, Eq. (2) becomes 

(4) 
]=I ~=1 }=1 

S e t t i n g  in  (4 )  u = v = y ,  we o b t a i n  t h a t  I;j(y)l 1 on Y. Hence ,  ~ j ( y )  = ( x j ,  y ) ,  i . e . ,  

p j  = E x j ,  1 ~ j ~ s .  For  t h e  c a s e  i i )  t h e  t h e o r e m  i s  a l s o  p r o v e d .  

iii) We can assume without loss of generality that X = Z,(3). Since the admissible 
sets for the group Z (3) consist of integers not divisible by 3, it is easy to see that 
one can assume that L l = $i .... , Ss and L 2 = $i +..-+ gs - ~s -.-.- Ss" Equation (2) 
becomes 

l 

j=l j=l+l j=l j=l j=l@l (5) 

Set ~l = ~i +...+ $s ~2 = ~s +-'.+ Ss" The distributions of the random variables are 
l s 

nl, n2- The characteristic functions of the distributions vl = * Dj, ~a = ~ ~j evid- 

ently satisfy the equation 

(u + v)% (u -- v) = v3 (u) vL (u) v, (v)v~ (--v). (6) 

As it was proved in [6] it follows from (6) that ~, v2 e I(Z (3)). Therefore, if v~ e 

~(Z (3)), Eq. (6) implies that 9= e ~(Z (3)) also and then we also have that pj e ~(Z x 

(3)), 1 g j g s. If, however, 9~ = mz(~ , it then follows from Eq. (6) that v~ = mz~a) 

also. Now note that if 7~ * ~2 = ~Z(3) on the group X =~Z (3) then at least one of the 

distributions 7j = mz(a) . It is then easy to conclude from (5) that the remaining distrib- 
utions pj can be arbitrary. Theorem i is thus proved. 

The following lemmas are required for the proof of Theorem 2. 

LEMMA 3. Let K be a compact group such that 2K = K, K ~ Z (3). Then there exist in- 
dependent random variables gj with values in K and distributions pj, i g j g 4, such that 

the linear forms L~ = ~ + g2 + ~ + ~ and L~ = g~ + $~ - $~ - ~ will be independent and 

Dj # I(K) , P(K), 1 ~ j ~ 4. 

Proof. Denote f(y) = mK(Y), Y e y = K*. It is easy to verify that the function f(y) 
satisfies the equation 

/ ( u + v ) [ ( u - - v ) = f i ( u ) l / ( v ) l  ~, u, v ~ Y .  

Choose y~,  y~ e y such  t h a t  t h e  e l e m e n t s  {y~,  Y2, -Y~,  -?]~} w i l l  be p a i r w i s e  d i s t i n c t  
and c o n s i d e r  on t h e  g roup  K t h e  f u n c t i o n s  

~ ( x ) =  1 + ( ~ / 2 ) [ ( x ,  g~)+(x, g~)], ] = ~, 2. 

E v i d e n t l y ,  p j ( x )  a 0. Deno te  by ~j t h e  d i s t r i b u t i o n  on t h e  g roup  K w i t h  t h e  d e n s i t y  p j ( x )  

(with respect to mK). It is easy to see that ~ , ~2 = mK" Characteristic functions ~(y) 

and ~(y) satisfy the equation 

p~ (u + u) ~ ( u  + v) ~ (u -- u) ~ ( u  - u ) =  p~ ( u , ) ~  (~,) I~(u) l~(~(v)12,  (7 )  
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u, v e y. Let Sj be independent random variables with the values in the group K possess- 

ing the distributions Dj, I ~ j ~ 4, where ~I = ~3, D~ = D~. It follows from Eq. (7) that 

the linear forms L l = $i + ~2 + $~ + $4 and L 2 = $~ + ~ - ~ - ~4 are independent~ it 

is evident that Dj # I(K) , F(K). The lemma is proved. 

Let q be a prime number. Denote by Z (q~) the multiplicative group (in the discrete 
topology) of the roots of unity whose powers are powers of the number q. Denote by &~ the 
group of characters of the group Z (q~) (see, e.g., [3, Sec. 25] for more details about 
the group 5q). 

LEM~ 4. Let X = hq~ Then there exist independent random variables ~i, $2 with the 

values in Aq and with the distributions Dl, ~2, such that the linear forms L l = q$i - $2 

and L 2 = ~i + q$2 are independent. It is evident that D1, D2 ~ I(Aq). 

Proof. Imbed the group Z (q) into Z (q~) and consider the functions 

{,,~(y), y ~ Z ( q ) ,  

/ j ( u )=  , y ~ z ( q ) ,  ] = t , 2 ,  

on the group Z (q~) where Sj(y) are arbitrary characteristic functions on the group Z (q). 

Functions fj(y) are continuous, positive definite [7, p. 330] and by the Bochner-Khinchin 
theorem are characteristic functions of certain distributions ~j on the group Aq. Let gj 

be a random variable with values in Aq possessing the distribution Dj. To verify that the 

linear forms L l = q~1 - g2 and L 2 = $I + q~2 are independent, it is sufficient to verify 

that the functions fl(Y) and fi(Y) satisfy Eq. (2) which becomes 

/ l (qu+v)/2(--u+qv)=/l(qu)/~(--u)/ l (v) /2(qv) ,  u, u ~ Z ( q ~ ) .  (8 )  

I f  u ,  v e Z ( q ) ,  r e l a t i o n  (8 )  i s  e v i d e n t l y  f u l f i l l e d .  I f  e i t h e r  u e Z ( q ) ,  v r Z (q )  o r  
u r Z (q) ,  v e Z ( q ) ,  t h e n  t h e  l e f t - h a n d  and t h e  r i g h t - h a n d  s i d e s  in  Eq. (8 )  v a n i s h .  L e t  
u ,  v r Z ( q ) .  Then t h e  r i g h t - h a n d  s i d e  in  Eq. (8 )  v a n i s h e s .  I f  qu + v ,  - u  + qv ~ Z ( q ) ,  
t h e n  (q2 + t ) u  e Z (q )  and h e n c e  u e Z (q )  which  c o n t r a d i c t s  t h e  a s s u m p t i o n .  Thus ,  e i t h e r  
qu + v r Z (q )  o r  - u  + qv r Z (q )  and t h e  l e f t - h a n d  s i d e  o f  Eq. (8 )  a l s o  v a n i s h e s .  T h i s  
p r o v e s  e q u a l i t y  (8 )  and hence  t h e  i n d e p e n d e n c e  o f  t h e  l i n e a r  f o rms  L 1 and L 2 i s  e s t a b -  
l i s h e d .  It is also evident that if ~l, v2 r !(Z (q)), then ~l~ ~ ~ i(Aq). The lemma is 
thus proved. 

LEMMA 5. Let G be a closed subgroup of the group X, ~ be a distribution on G. If 
# I(G) , F(G), then ~ # I(X) , F(X). 

The proof of this lemma is self-evident and is thus omitted. 

Proof of Theorem 2. Assume that the group X is not topologically isomorphic to the 
groups stipulated in Theorem i. The following cases are possible. 

i. The group X contains a subgroup G = % (2). Let $~ and ~ be independent random 
variables with values in G and the distributions ~, D2 ~ I(G). Since the group is dis- 
crete we have r(G) =~ (G) and hence I(G) , r(G) = I(G). From Lemma 5 ~, B2 ~ I(X) , F(X). 
As it is easy to see, the linear forms L~ = 25~ - $= and L= = ~ + 2~ are independent and 
the sets {2, -i}, {i, 2} are admissible for the group X since by the condition 2X # {0}. 

2. The group X contains the subgroup G z Z (3). If 3X # {0}, let $~ and $2 be inde- 
pendent random variables with values in G possessing the distributions D~, ~2 # I(G). 
Since the group G is discrete, it follows that F(G) ~(G); therefore I(G) , F(G) = I(G). 
Lemma 5 implies that ~, ~ ~ I(X) , F(X). The linear forms L~ = 3~ - $2 and L~ = g~ + 

352 are evidently independent and the sets {3, -i}, {i, 3} are admissible for the group X. 

If 3X = {0}, then since X ~ Z (3), the group X contains the subgroup K : Z (3) +Z(3). 
The existence of the required random variables ~j and the linear forms L~, L= is now as- 
sured by the Lemmas 3 and 5. 

3. Group X contains the subgroup K = m (q) for some prime q > j. The existence of 
the required random variables Sj and the linear forms L~, L= also follows from Lemmas 3 and 5. 
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4. Group X contains no nonzero elements of a finite order. From the structure 
theorem for locally compact Abelian groups, each group X is topologically isomorphic to the 
group of the form X = R~+ G, where n e 0 and the group G contains a compact open subgroup 
K (cf. [3, p. 493]). Since the group is not topologically isomorphic to the group of the 
form (i) and contains no nonzero elements of a finite order, it follows that K ~ {0}. How- 
ever, the compact group K containing no nonzero elements of a finite order is topological- 
ly isomorphic to the group of the form 

~q 
K~(E~)  ~ +  e~ Aq , (9) 

q E , ~  

where Z~ is the group of characters of the group of rational numbers Q in the discrete top- 
ology, ~ is the set of all the prime numbers, 9~, 91~ are cardinal numbers [3, p. 514]. We 
now observe that for any prime q the group Z contains the subgroup G I -- A a. Since the 
group Aq is completely disconnected, F(A s) = ~ (A s ) and hence I(A s) , F(Aq~ = l(Aq). The 
existende of the required random variables Sj and the linear forms L I, L 2 now follows from 
Lemmas 4 and 5. The proof of Theorem 2 is thus completed. 

2. Now let 61 ..... Ss be independent random variables with values in the group X 

and the distributions ~i ..... ~s; {~j}, {~j} will be admissible sets of integers for the 

group X. As we have seen in the proofs of Theorems i and 2 the independence of the linear 
forms L I = ~i$i +.- .+ ~sSs and L 2 = ~l$1 +'" "+ ~SSS (unlike the situation when X = R ) in 

general does not imply that the characteristic function ~j(y)% does not vanish. In Theorem 

3 presented below, we provide a complete description of the groups X for which the independ- 
ence of the linear forms L l and L 2 under the additional condition ~j(y) ~ 0 for all y e y, 

I <- j <_ s implies that ~j e F(X), i <- j ~ s. 

THEOREM 3. Let $i, -.., Ss be independent random variables with the values in group 

X and distributions Dj such that H ~j(y) ~ 0 for all y e y; {~j} and {~j} will be admis- 
j=l 

sible for X sets of integers. In order that the independence of linear forms L I = ~l$1 + 
�9 "" + ~SSS and L 2 = ~i$i +.-'+ ~sSs imply that ~j �9 F(X), 1 ~ j E s it is necessary and 

sufficient that the grou~ X either contains no nonzero elements of a finite order or qX = 
{0}, where q is a prlme.~ 

To prove the theorem the following lemmas will be required. 

LEMMA 6. Let K be a compact group ~, ~ e Z , ~K = K, f(g) be a continuous nonnega- 
tive function on K. Then the inequality 

+ S (lO) 
K 2 K2 K 2 

is fulfilled with the equality valid if and only if f(g) = 0 for g e ~K. 

Proof. Since ~K = K, it is easy to verify that 

S / + (u, = .[ / (g) (g), ( 11 ) 
K z K 

/ (o~u)) dra~z~ (u, u) = .f / (g) dmK (g). (12) 
K~ K 

Since f(g) ~ 0 on K, inequality (i0) follows from (ii) and (12). Moreover, if this in- 
equality becomes an equality then f(~v) -- 0 on K, i.e., f(g) = 0 for g �9 ~K. 

LEMMA 7. Let X = Z (q~), $i ..... Ss be independent random variables with the values 

in Z (q~) and distributions Dj such that ~j(y) > 0 for all y e Aq, i <_ j <- s, and H ~j • 
9=l 

%Proofs of Theorems I and 2 imply that the group for which the independence of the linear 
forms L I and L 2 imply that the characteristic functions ~j(y) do not vanish are either 
groups of the form (I) or groups for which 2X = {0}. 
$Since the group X such that qX = {0} is completely disconnected, it satisfies F(X) = 9 (X). 
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(y) = 1 only if y = 0; {~j}, {~j} be sets of integers different from zero. Then the lin- 
ear forms L I = ~i~i +...+ ~s~s and L 2 = $i~i +~ ~s~s cannot be independent. 

Proof. Replacing, if necessary, the random variables ~j by the random variables ~j~ = 

dj~j we can assume that the numbers ~j and ~j are mutually prime and the condition H • 

~j(y) = 1 is not violated only for y = 0. Indeed, let the equality ~j(djy) = i~ 1 ~ j ~ s 

be fulfilled for some y e Aq. Then ~j(d I .... , daY) = i, i ~ j ~ s. Hence, dl ..... daY = 

0 by the conditions of the lemma and since the group Aq contains no nonzero elements of a 

finite order, it follows that y = 0. 

Set fj(y) = -in~j(y). We then obtain from Eq. (2) 
@ 

j=1 j=1 ~=i 

Integrating this equality over the group Aq 2 and interchanging the orders of integration 
and summation we have 

J: :E j /j + = /j + fj ( I3 )  
A~ Aq 

S i n c e  t h e  numbers  a j  and ~j a r e  m u t u a l l y  p r i m e ,  a t  l e a s t  one o f  t h e s e  numbers i s  n o t  d i v i s -  
i b l e  by q. Therefore either ajAq = Aq or ~jAq = Aq. Lemma 6 implies fromsEqo (13) that 

in inequality (i0) for f(y) = fj(y), 1 ~ j ~ s equality is valid. Hence ~Jl ~J(Y) = i for 

y e aj~i Aq ~ {0} which contradicts the condition. 

LEMMA 8. Let X = Z (q), where q is a prime number, $i ..... ~s will be independent 

random variables with values in Z (q) and distributions Dj such that ~j(y) > 0 for all y 

Z (q), 1 ~ j ~ s and ~ ~j(y) = 1 for only y = 0, {aj}~ {~j} will be sets of integers 

none of which is divisible by q. Then the linear forms L I = a1~ l +...+ ~s~s and L 2 = Bl~ + 
�9 -" + Bs~s cannot be independent. 

The rop_r_q9 ~ is completely analogous to the proof of Lepta 7 and is this omitted. 

LEMMA 9 [8]. Let ~, ~, ~= be distributions on the group X. In order that ~ ~ F(X), 

= D~ * ~ imply the inclusion ~j e F(X), j = i, 2, it is necessary and sufficient that 

the group X contain no subgroup topologically isomorphic to T. 

An element x 0 e X, x 0 # 0 will be called infinitely divisible if the equation nx = x 0 
possesses a solution in X for an arbitrary large positive integer n. 

LEMMA i0 [9]. Let the group X possess the property: any quotient group of the group 
Y = X* possesses an infinitely divisible element. Then if the characteristic function ~(y) 
of a distribution ~ on X satisfies the conditions: i) ~(y) > 0 for all y e y; 2) 7(ny) = 
(~(y)) n~, n = 2, 3 ..... then ~ e F(X). 

Proof of Theorem 3. Necessity._ Assume that the group X contains an element x 0 of 
order q where q is a prime number but qX # {0}. Let G be a subgroup in X generated by the 
element x 0 and ~, $= be independent random variables with values in G possessing nondegen- 
crate distributions D~, D= such that ~(Y)~2(Y) # 0 for all y e G*. As it is easily seen, 
the linear forms L~ = qg~ - $= and L~ = $~ + q~= are independent and the sets {q - i} and 
{i, q} are admissible for the group X. Evidently, ~j # F(X), j = i, 2. 

Sufficiency. Assume that the group X possesses no nonzero elements of a finite order. 
It is necessary to prove that if the characteristic functions of distributions Dj satisfy 
Eq. (2) then D~ e F(X), 1 ~ j ~ s. Evidently, the characteristic functions of distribu- 
tions v$ = ~j , ~j also satisfy Eq. (2) but here vj(y) > 0 for all y e y. Since the group 
X contains no subgroup topologically isomorphic to T, in view of Lemma 9 it is sufficient 
to verify that vj e F(X), 1 ~ j ~ s. We can thus assume from the very beginning that ~j • 

(y) > 0 for all y e y, 1 ~ j ~ s. In view of Lemma 2 one can also assume that [[ ~j(y) = 
j=l 
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i only for y = 0. We first verify that in this case X : Rn+ (Ea) ~, where n > 0 and is a 
cardinal number. 

By the structure theorem for locally compact Abelian groups, the group X is topolog- 
ically isomorphic to the group of the form X : R" + G, where n _> 0 and the group G contains 
a compact open subgroup K. Let Y : R n + H, H = G*. Since C H is a connected compact group, 
Lemma 1 implies that C H = {0}, i.e., the group H is completely disconnected. Since the 
group K contains no nonzero elements of a finite order, K is topologically isomorphic to 
a group of the form (9) and then C X = R~+ (Z~)~ Since the group X contains no nonzero 
elements of a finite order, C X is a direct summand in X, i.e., X = C X + A [3, p. 529]. 
The group A is now completely disconnnected. Denote A* = B. Since the group A is com- 
pletely disconnected, group B consists of compact elements [3, p. 496] and since the group 
B is topologically isomorphic to a subgroup in H, group B is completely disconnected be- 
cause H is such a group. 

Consider an element b e B and let M b be a closed subgroup generated by b. Properties 
of the group B imply that M b is a zero-dimensional compact monotonic group. Therefore, 
(cf. [3, p. 517]) the group M b is topologically isomorphic to the direct sum 

Mb~-. @ fq, (14) 
q~5~ 

where  : ~ i s  t h e  s e t  o f  p r ime  numbers and each  one o f  t h e  g roups  Fq i s  e i t h e r  {0} or  Z ( q r q )  
( r q  i s  a p o s i t i v e  i n t e g e r )  o f  Aq. In  v iew of  Lemma 7, t h e  c a s e  when Y~ = h~ f o r  a t  l e a s t  
one q i s  i m p o s s i b l e .  I n  view o f  Lemma 8, t h e  s e t  o f  q such  t h a t  t h e  sdbgrodp  Fq = Z ( q r q )  

can o c c u r  in  t h e  d e c o m p o s i t i o n  (14)  f o r  a l l  p o s s i b l e  e l e m e n t s  b e B i s  f i n i t e  and c o n s i s t s  
o f  d i v i s o r s  o f  c e r t a i n  numbers f rom t h e  s e t  { a j ,  ~ j } j = l  s .  I f  t h e  e x p o n e n t s  rq  a r e  j o i n t l y  
bounded,  t h e n  f o r  some n e Z t h e  r e l a t i o n  nB = (0} ~s v a l i d  which  i m p l i e s  t h a t  nA = {0} i s  
a l s o  v a l i d .  Th i s  i s ,  however ,  i m p o s s i b l e  s i n c e  t h e  subgroup  A c X c o n t a i n s  no n o n z e r o  
e l e m e n t s  o f  a f i n i t e  o r d e r .  Hence t h e  g roup  B c o n t a i n s  s u b g r o u p s  t o p o l o g i c a l l y  i s o m o r p h i c  
t o  Z ( q r q )  w i t h  an a r b i t r a r y  l a r g e  rq  f o r  a t  l e a s t  one q. We f i x  such  a q. Le t  ~j = 

qs aj , ~j = qmj bj, nj = min{s mj}, s mj ~ 0. Choose n > max {s mj}, such that 

t h e  g roup  B p o s s e s s e s  a subgroup  F t o p o l o g i c a l l y  i s o m o r p h i c  t o  Z ( q n ) .  Se t  f j ( y )  = - l n  • 

~ j ( y )  and n o t e  t h a t  by t h e  c o n d i t i o n  ~ f j ( y )  = 0 f o r  y = 0 o n l y .  Tak ing  l o g a r i t h m s  on 
J = l  

both sides of Eq. (2) we integrate the equality obtained over the group F 2 with respect to 
the measure dmy2 interchanging the order of summation and integration. We have 

j=l ~ (u,v)E~,2 j = l  q ( u , v )~F  2 j = l  - (u ,v)~F~ 

I t  i s  e a s y  t o  v e r i f y  t h a t  

(u ,v )~F  ~ n.  
y~q 3F 

E = D 
(u,v)~F 2 y~qljF 

Note  a l s o  t h a t  in  view o f  t h e  c h o i c e  o f  number n ,  r e l a t i o n s  qs F ~ (0} ,  qmj ' F # {0}, 
l<_j ~ s. 

It follows from the above that equality (15) can be rewritten in the form 

~ ~ ~ (16) D(Y)= q 'i D(y)  D(y). 
j~ l  y~q JR j = l  yEq ~F yEq~F 

= e q u a l i t y  (16)  i s  i m p o s s i b l e .  We have  t h u s  shown t h a t  B = Since either nj = ~j or nj .mj, R n . 
{0} and hence ~iso A = {0}, i.e., X = ,+ (Z~) ~ The problem is thus reduced to a proof 
of the theorem for a group X of the form indicated above. 

Observe that Y = R n + Q~* Since for any integer m, X and Y are groups with single- 
valued division by m, utilizing Lena 9 we can, as is the case in the classical situation, 
assume, without loss of generality, that ~j = I, I ~ j g s and all ~j are rational and dis- 
tinct. 
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traction of Eq. 

equation 

Fix an arbitrary element Y0 e y and take the subgroup L(y 0) = {y e y: y = (m/n)y0, 
m, n e Z, n ~ 0}. Evidently, L(y 0) z Q. Set ~j(m/n) = fj((m.n)y0) and consider the con- 

(2) onto L(y0). Then the functions ~j(r), r e Q, 1 ~ j ~ s satisfy the 

~ ( u + ~ j v ) = A ( u ) +  B(v), u ,v~Q,  (17)  
j=l 

where A(u) = ~ = ~ Further arguments up to the notation, coin- j=1 @~(u), B(v) ~=i ~j($jv). 

cide with the proof of the Skitovich-Darmois theorem by the method of finite differences 
(see, e.g. [I0, pp. !85, 186]). All the increments of the arguments should be considered 
to be rational here. We will obtain that each function ~j(u) satisfies the equation 

A~,s(~)=  o, ~ Q ,  (18) 

where h is an arbitrary rational nmnber and A h is a finite difference operator Ahf(u) = 
f(u + h) - f(u). 

[For completeness we present the corresponding arguments for the case s = 2. Equation 
(17) becomes 

,~ (u + ~ v) + ~ (u + ~v)  = A (u) + B (v). (19)  

We increment u and v by the amounts h, k e Q such that h + ~ik = 0. Since ~i ~ ~2, it fol- 
lows that s = h + $i k # 0. Then 

~l(u + ~lv+l)+ ~2(u+ ~ i v ) = A ( u + h ) + B ( v + k ) .  (20)  

S u b t r a c t i n g  Eq. (19) f rom Eq. (20)  we have  

4I (U + ~IU + l) - -  41 (U + ~ID) ~ AhA (u) + A~B(v). (21)  

Setting v = 0 here we obtain 

4, (u + l)-- 4, ( u ) =  A~A (u )+  A,B (0). (22)  

Subtracting Eq. (22) from Eq. (21) and setting v = ~/~i we arrive at 

9~ (u + 2 0 -  2r (u + 1)+ ~ ( u ) =  AkB(U~,)-  AkB(0), 

i.e., As = e(s and hence As = O. We observe now that s = h(~2 - ~i)/~2 is 
an arbitrary rational number since h is arbitrary.] 

We rewrite Eq. (18) in the form 
s+l 
E ( -  O~-k+~cL~% (~ + ~h) ( 23 ) 

k=0 

F i x  h e Q and d e n o t e  L h = {~h}s ~ as  t h e  subgroup  g e n e r a t e d  by h.  C o n s i d e r  Eq. (23)  on 
L h and n o t e  t h a t  i f  , j ( u )  = 0 f o r  any u e Z n L h ,  t h e n  , j ( u )  ~ 0 on L h.  I n d e e d ,  any s o l -  

u t i o n  o f  Eq. (23)  on L h i s  o f  t h e  form O j ( u )  = c o + c i u  + . . . + c s u S ,  w h e r e c  i a r e  c o n s t a n t s  

[ii, p. 322]. Since the set Z 0 L h is infinite c o =...= c s = 0. 

Now note that any polynomial of degree not higher than s satisfies Eq. (23). We 
choose the polynomialg~(u)=a0+ai:~+...+a~u, such that ~i(P) =gJ (p) for p = 0, 1 ...... s. 
Set 6j(u) = ~j(u) -9~ (u). The function 6j(u) also satisfies Eq. (23) for any h'e Q and 

conditions 6j(p) = 0, p = 0, !, ..., s. Therefore setting in Eq. (23) h = i, u = 0, • 

... we successively obtain that 6j(u) = 0 for any u e Z. As it was mentioned above, this 
implies that 6j(u) = 0 for any u e L h where h is an arbitrary rational number, i.e., ~j • 

(u) ~ 0 on Q. Thus the function ~j(u) is a polynomial of degree at most s on Q . There- 

fore the functions s = exp {~j(u)} are continuous on the group G in the topology in-. 

duced on Q from Q and hence are extended up to positive definite functions s on the 

group R satisfying Eq. (2). By Theorem A, s = exp {-ajui}, ue R. In particular, for 

any integer n the equality s = (Zj(u)) n= is valid. Setting in it u = I we obtain 
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= (Dj(y~)) n 2 . -  Since Y0 is an arbitrary element of Y the conditions of Lemma I0  j(ny0) 
are satisfied. Hence Dj e F(X). 

Consider now the case where qX = {0}, where q is a prime number. Then also qY = {0}. 
Since the sets {~j} and {~j} are admissible neither ~j nor ~j is divisible by q. Replac- 

ing the distribution Dj by Dj , %, we may assume that ~j(y) > 0 for all y e y, i <_ j <_ s. 

Consider now the contraction of Eq. (2) onto some subgroup G c y generated by an arbitrary 
�9 { 

element Vn e y, Y0 # 0. Evidently G : Z (q). It follows from Lemma 8 that E = y~G: x 

I J ~ j ( y ) = t  4{0}. Hence E = G, i . e . ,  ~ ( y )  --= 1 on G, 1 <_ j <- s .  T h i s  i m p l i e s  t h a t  ~ j ( y )  = 1  

on Y, i . e . ,  taj e ~  (X) c r ( X ) ,  1 <- j ~ s .  The t h e o r e m  i s  t h u s  p r o v e d .  

Remark i. From a complete description of groups X for which the Cramer theorem on 
the decomposition of a Gaussian distribution is valid presented in paper [8] [the theorem 
states that if the sum $i + ~2 of independent random variables possesses a Gaussian dis- 
tribution so do the components ~i and ~2 (cf. Lemma 9)] it follows that this class of 
groups is substantially larger than the class for which the Skitovich-Darmois theorem is 
valid (cf. Theorem I). The situation does not change if we require additionally that the 
characteristic functions ~j(y) of the distributions under consideration also satisfy the 

condition ~ ~j(y) # 0 for all y e y (cf. Theorem 3). 
~=i 

As in the case where X = R the Cramer theorem on arbitrary groups follows from the 
following particular case of the Skitovich-Darmois theorem. 

THEORF/4 B. Let $i, $2, $3, $4 be independent random variables with values in the 
group X and distributions ~i, ~2, ~3, ~4 and, moreover, let i) ~i = ~3, ~2 = ~; 2) ~l(Y) • 
~2(Y) # 0 for any y e y. Then if the linear forms L l = ~i + ~2 + E~ + g4 and L 2 = ~l + 
~2 - ~ - ~4 are independent, Dl, P2 e F(X). 

Proof. Let ~i, $2 be independent random variables with distributions D~, ~= and let 
the sum $~ + g~ possess the Gaussian distribution, i.e., D~ , U~ e F(X). Selecting ~ and 
$~ to have the same distribution as ~ and ~=, respectively (the random variables obtained 
$~, $~, $~, ~ are independent) we observe that the linear forms L~ = (g~ + g=) + ($~ + 
~) and L~ = ($~ + ~) - (~ + ~) are independent. By Theorem B ~, ~ e F(X). 

In turn, Theorem B follows from the Cramer theorem. To prove this, we note that the 
independence of the linear forms L~ and L 2 is equivalent to the fact that the characteris- 
tice functions ~(y) and ~(y) satisfy Eq. (7). 

Set 7 = D~ , D2 * ~ * ~=. Then the characteristic function 7(y), as it follows from 
Eq. (7) satisfies the equation 

Condition 2 implies that 7(y) > 0 for all y e y. Setting ~ (y) = in~(y), we observe (cf. 
definition i)for 7 e F(X). Then by Cramer's theorem ~, ~2 e F(X). 

Thus the classes of groups on which the Cramer theorem and Theorem B is valid are the 
same. If, however, in Theorem 2 we relinquish condition 2; then, as Lemma 3 indicates, an 
analogous assertion is not valid. 
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DOMAINS OF VALUES OF SYSTEMS OF COEFFICIENTS OF BOUNDED 

TYPICALLY REAL FUNCTIONS IN THE DISK 

V. V. Chernikov UDC 514.54 

Let T R denote the class of typically real functions in the disk E = {z: Iz[ < i}, 
i.e., of the functions 

F ( z ) = z  + b2z 2 + . . .  + b ~ z ~ + . . .  (1) 

that are regular in E and satisfy in E the conditions ImF(z) = 0 for Imz = 0, ImF(z) x 
Imz > 0 for Imz # 0. Let TR(M) denote the class of the functions 

] ( z ) =  z + c2z 2 + . . .  + c~z ~ + . . . ~  T~ (2) 

such that If(z) I < M for z e E, where M is a fixed number such that 1 < M < ~. 

In [i] sharp estimates of the coefficients c2, c3, c 4 have been obtained with the 
help of integral representation in the class TR(M). 

In the present article we find the domain of values of the system {c= ..... Cn} in 
the class TR(M) ; the method to be used is based on the extremal properties of functions of 
the class T R. 

The following integral representation for the class of typically real functions is 
known [2; 3; 4, p. 516 and 517]: a function F(z) belongs to T R if and only if it admits 
in the disk E the representation 

1 

~ ( 3 )  f ( z ) =  t _ 2 t ~ + ~  d~( t ) ,  

- - 1  

where ~(t) belongs to the class A[-I, i] of nondecreasing functions on [-I, !], such that 
~(i) - e(-l) = I. Using the known (see [5, p. 161; 6, p. 172]) expansion (for -I ~ t ~ i) 

t_2t~+~2 - U~_l(t)zL z ~ E ,  (4) 

from (4), (3), and (i) we get the following integral representation of coefficients for 
each function F(z) e TR: 

i 

b~ = i" un_1 (t) d= (t), ~ = I, 2 ..... (s) 
--1 

In Eq. (4) and Eq. (5) the symbols Un(t) , t e [-I, I] denote Chebyshev polynomials of sec- 
ond order such that [5, p. 152; 6, p. 178] 

Uo(t)= 1, U t ( t ) = 2 t ,  U ~ + l ( t ) = 2 t U ~ ( t ) - U ~ _ ~ ( t ) ,  rt----t, 2 . . . . .  (6) 

Tomsk. Translated from Sibirskii Mathematicheskii Zhurnal, Vol. 31, No. 2, pp. 191- 
196, March-April, 1990. Original article submitted October 15, 1987. 
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