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Abstract—The problem of electromagnetic emission of an edge dislocation segment moving in an ionic lattice
with a NaCl-type structure is considered. The proposed mechanism of electromagnetic emission is associated
with the appearance of macroscopic alternating polarization currents along the extraplane edge of the edge dis-
location in the course of its motion between adjacent valleys of the Peierls relief. The relationships for electro-
magnetic radiation fields of an arbitrarily moving segment are derived, and the problem of electromagnetic
emission of a segment that executes harmonic oscillations in the field of an external quasi-stationary elastic
wave with a frequency Ω ! c/l (where l is the segment length and c is the velocity of sound) is treated in detail.
The power of the emitted electromagnetic signal and the “acoustoelectromagnetic transformation” coefficient
(the ratio between the electromagnetic radiation power and the mechanical power required for setting the seg-
ment in motion) are determined. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electromagnetic effects that accompany the motion
of defects in crystals have been the subject of extensive
investigations in modern solid-state physics. Over the
last few years, considerable advances have been made
in this area of science. First and foremost, these are
experimental observations [1–3] and theoretical inter-
pretation [3, 4] of the magnetoplastic effect in ionic
crystals and metals and also detailed experimental
investigations into the electromagnetic emission of dis-
locations and cracks [5, 6]. It should be emphasized that
these phenomena are essentially dynamic in character
and, hence, are of particular importance in the under-
standing of the nature of plastic deformation in solids.
Electromagnetic phenomena in deformed solids have
long been studied both from the standpoint of basic
research [7] and in relation to applied problems arising,
for example, in geophysics [8] and fracture mechanics
of structural materials [9, 10].

An interesting dynamic effect in strained crystals is
the emission of electromagnetic waves during disloca-
tion motion and the nucleation and growth of cracks. In
principle, it is clear that, for example, dislocation
motion brings about disturbances in both the crystal lat-
tice and the electronic subsystem of the crystal. As is
known, the former disturbance leads to the generation
of elastic waves in the sample and the latter disturbance
gives rise to electromagnetic emission whose character
is determined by the specific properties of dislocations
and the medium in which the electromagnetic wave
propagates. It seems likely that ionic crystals are the
most convenient objects for the investigation of electro-
magnetic emission of dislocations, because they are
dielectrics in which absorption of an electromagnetic
1063-7834/01/4310- $21.00 © 21898
signal is virtually absent down to the IR frequency
range. On the other hand, dislocations of the majority of
the types in these crystals have a charged core [11, 12],
so that their motion is naturally attended by effective
currents. Therefore, in this case, it is rather simple to
construct adequate physical models in which a disloca-
tion is interpreted as a source of electromagnetic waves
in the crystal.

Kosevich and Margvelashvili [13] studied the emis-
sion of electromagnetic waves by mobile dislocations in
ionic crystals and explained this phenomenon in terms of
a mechanism based on electroelastic effects in deformed
lattices consisting of oppositely charged ions. In our ear-
lier work [14], we proposed an alternative mechanism of
electromagnetic emission of edge dislocations in ionic
crystals, according to which the electromagnetic emis-
sion is due to the occurrence of macroscopic polarization
currents along the line of a moving rectilinear disloca-
tion. It turned out that the emission intensity in the latter
case is five orders of magnitude higher than that in the
former case. Therefore, it can be expected that the mech-
anism proposed in [14] is responsible for experimentally
observable effects.

In [13, 14], the electromagnetic emission was con-
sidered for rectilinear edge dislocations. It is clear that,
in a real crystal, a dislocation moving through a stopper
network is actually a set of oscillating segments. In this
respect, it was of interest to solve the problem of elec-
tromagnetic emission of a curvilinear dislocation
whose configuration is an arbitrary function of time.
The aim of the present work was to analyze the formu-
lated problem and to elucidate the contribution from
this emission mechanism to the total electromagnetic
emission.
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2. FORMULATION OF THE PROBLEM

Let us consider an edge dislocation in a cubic cell of
the NaCl type with a glide plane coinciding with one of
the {110} planes. The Cartesian coordinate system is
chosen in such a way that the dislocation glides in the
plane y = 0 and its line in the absence of external distur-
bances coincides with the z axis. We assume that the
dislocation line in the course of motion is so curved that
its configuration in the laboratory coordinate system at
any instant of time can be described by the function x =
x0(z, t), which is single-valued with respect to the
z coordinate. This means that the dislocation during the
motion cannot generate loops of the Frank–Read
source type. Therefore, the charge density ρ(r, t) at the
extraplane edge of the curvilinear dislocation (in the
core) can be represented as

(1)

Here, e* is the effective charge of a node at the extra-
plane edge, 2a is the distance between likely charged
ions along the z axis [positive ions are located at the
sites z = 2ma and negative ions occupy the sites z =
(2m + 1)a], and the period of the function F(x) [|F(x)| ≤
1] in the direction of the dislocation motion is equal to
2b (where b is the distance between adjacent minima of
a Peierls relief in the direction of the Ox axis). The mul-
tiplier F(x) allows for the effective “recharging” of the
node located at the dislocation line when this node is
displaced to the adjacent valley of the Peierls relief
[14]. It is worth noting that, unlike the rectilinear dislo-
cation [14], the sign of the effective charge at the node
through which the line of a curvilinear dislocation seg-
ment passes [see formula (1)] depends on two coordi-
nates (x0 and z).

It is evident that the evolution of the charge in the
core of a curvilinear dislocation should satisfy the con-
tinuity equation

(2)

where j is the effective current density in the dislocation
core. By differentiating relationship (1) with respect to
time and rearranging it, we have

(3)

ρ r t,( ) e*δ y( )F x( )δ x x0– z t,( )( )=
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

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Here, we used the approximate expression

which implies that we are interested only in micro-
scopic quantities that vary slowly at distances of the
order of interatomic distances. This corresponds to the
usual procedure of microcurrent averaging accepted in
electrodynamics of continua [15]. Comparison of rela-
tionships (3) and (2) demonstrates that the term under
the sign of the total derivative with respect to z in for-
mula (3) is the current density component jz, that is,

(4)

where V(z, t) = ∂x0(z, t)/∂t is the distribution of veloci-
ties of motion of dislocation segment points. The other
part of expression (3) is naturally attributed to ∂jx/∂x.
By integrating it over x, we find

(5)

When writing relationships (4) and (5), we performed
averaging of the corresponding terms in expression (3)
over the z coordinate.

Now, it is easy to calculate the components (neces-
sary for further analysis) of the dipole moment vector
d(t) of the dislocation segment. This vector is related to
the current density j by the usual expression [16]

(6)

With due regard for relationships (4) and (6), the dipole
moment component dz is given by

(7)
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For dx, after the integration of expression (5) over y and
z, we obtain

(8)

where z = z1, 2 are the coordinates of the dislocation
ends (formally, we can set |z1, 2|  ∞). For the calcu-
lation of integral (8), we assume that the motion of the
curvilinear dislocation can be considered a superposi-
tion of displacements u(z, t) of dislocation points in a
certain accompanying coordinate system and the dis-
placement X(t) of this system in space; i.e., x0(z, t) =
X(t) + u(z, t). To state this differently, the dislocation
motion can be treated as a superposition of the motion
of a rectilinear (on the average) dislocation and the dis-
location point oscillations u(z, t) about the oX(t) axis of
the accompanying coordinate system. The oX axis of
this system can be chosen, for example, from the con-
dition

Here, we will not discuss the question as to whether
this definition of the accompanying system is unique.
For our purposes, it is sufficient that such a system exists
in principle. Since integrand (8) involves the δ function,
the range of integration in this integrand is actually lim-
ited from above by x = X(t) + u(z, t). In this case, the
integral over x from –∞ to X(t) becomes zero under the
assumption that V(z1, t) = V(z2, t) = dX/dt at |z1, 2|  ∞
and the dislocation ends are simultaneously located in
valleys of the Peierls relief; i.e., F[x0(z1, t)] = F[x0(z2, t)].
Then,

(9)

Finally, when the segment ends are fixed at stoppers,
we obtain V(z1, t) = V(z2, t) = 0 and the dipole moment
component dx vanishes. It is this case that will be con-
sidered in the following discussion.

3. ELECTROMAGNETIC EMISSION 
OF A DISLOCATION SEGMENT

In this section, we will derive the relationships that
describe the electromagnetic fields induced in the crys-
tal by a single dislocation segment, which has the initial
length l and is fixed at the points z = ±l/2 on the Oz axis.
The dislocation, as before, glides in the plane y = 0. As
can be seen from formula (5), the current density com-
ponent jx for the segment with fixed ends vanishes, so

dx
e*
2

------= x V z1 t,( ) ∂
∂x0
--------F x0 z1 t,( )( )Θ x0 z1 t,( ) x–( )d

∞–

+∞

∫

-----– V z2 t,( ) ∂
∂x0
--------F x0 z2 t,( )( )Θ x0 z2 t,( ) x–( ) ,

u z t,( ) zd

z1

z2

∫ 0.=

dx
e*
2

------u z t,( ) V z1 t,( ) V z2 t,( )–[ ] ∂
∂x0
--------F x0 z1 t,( )( ).–=
PH
that the evolution of the radiation fields is governed
only by the dipole moment component dz(t).

It is convenient to represent the radiation fields of
the segment in the spherical coordinates r, θ, and ϕ,
where the azimuthal angle θ is measured from the Oz
axis of the Cartesian coordinate system. The formulas
for the strengths E(r, t) and H(r, t) of electric and mag-
netic fields of an elementary dipole in the wave zone are
given in [17]. The spectral components (Fourier trans-

forms with respect to time) Eω(r, θ, ϕ) = (0, (r, θ, ϕ),

0) and Hω(r, θ, ϕ) = (0, 0, (r, θ, ϕ)) of the radiation
fields have the form

(10)

The , , and  spectral components intro-
duced into expression (10) are determined in the usual
manner. For example,

(the spectral components of all the other functions of
time are determined in a similar way).

Thus, the problem of calculating the spectral com-
ponents of the dipole moment reduces to calculation of
integral (7) under the most general assumptions about
the form of the u(z, t) function that determines the dis-
placements of dislocation segment points. It is clear
that the displacements u far from the fixed points can be
sufficiently large (~L). In any case, it is evident that, for
macroscopic segments with l > 10–6 cm, the inequality
|u(z, t)| @ b is true virtually for all segment points
(except for small neighborhoods of fixed points). This
allows us to evaluate integral (7) by using the large
parameter |u(z, t)|/b @ 1. With the aim of simplifying
further calculations, we assume, as was earlier done in
[13], that F(x) = –cos(πx/b) and write dz as

(11)

Integral (11) includes the large parameter u(z, t)/b in
the argument of the cosine and can be estimated within
the stationary phase approximation [18]. As a result, we
obtain

(12)

Eθ
ω

Hϕ
ω
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ω r θ ϕ, ,( ) = Hϕ

ω r θ ϕ, ,( ) = 
ω2

c2r
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  .expsin
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ω dz
ω

dz
ω td dz t( )

∞–
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∫ iωt–( )exp=

dz
e*
2
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b
---u z t,( )dx 

  .cos

l/2–

l/2

∫=

dz t( ) e*
b
2l
----- 

 
1/2

–=

× 1

uzz'' zα t,( )
------------------------- π

b
---u zα t,( ) π

4
---+ 

  ,cos
α
∑
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where zα is a set of stationary points determined by the

condition  = 0 [hereafter, the prime designates the
derivative of the u(z, t) function and the subscript indi-
cates the variable with respect to which the derivative is
taken]. Therefore, horizontal (u ' = 0) and weakly
curved (u ''  0) portions of the oscillating segment
make the main contribution to the emission.

In order to obtain a more concrete result, we calcu-
late the segment motion in the framework of the string
dislocation model [19]. In this approximation, the
equation of segment motion takes the form

(13)

Here, ρD = (ρb2/4π)ln(l/b) and G = (µb2/4π)ln(l/b) are
the mass per unit length and the line tension of disloca-
tion, respectively; ρ is the density; µ is the shear mod-
ulus of the medium; B is the coefficient of dislocation
friction; and σ is the external stress. Equation (13)
should be complemented by the boundary conditions at
the segment ends u(±l/2, t) = 0 and the initial condi-
tions, which are conveniently written as u(z, 0) = 0 and

(z, 0) = 0.

In the case of the boundary-value problem (13), its
solution, which is usually represented as a series, is of
limited utility for obtaining the pictorial results of inter-
est. Since our prime concern is in the construction of
particular qualitative dependences, we consider the sit-
uation when the segment either is set in motion by a
quasi-uniform (on a scale of the order of segment sizes)
external field or executes thermofluctuation displace-
ments at low temperatures at which the contribution
from higher harmonics to the configuration of a dislo-
cation string is negligibly small. Within these approxi-
mations, the law of dislocation segment motion for cal-
culating the dipole moment can be deduced according
to the following scheme.

Let us construct the approximate solution to
Eq. (13) by using the direct variational procedure. The
action for the dislocation string can be written as

(14)

where + is the Lagrangian density defined by the
expression

(15)

The Euler equation corresponding to this variational
problem in the presence of friction forces is given by

(16)

The term on the right-hand side of Eq. (16) describes
the friction forces expressed in terms of the dissipative
function

uz'

ρDutt'' But' Guzz''–+ bσ z t,( ).–=

ut'

S td∫ z+ u ut' uz' t, , ,( ),d

l/2–

l/2

∫=

+ u ut' uz' t, , ,( )
ρD

2
------ ut'( )2

= G
2
----– uz'( )2

buσ z t,( ).–

d
dt
-----

∂+
∂ut'
-------- d

dz
-----

∂+
∂uz'
-------- ∂+

∂u
--------–+

∂^
∂ut'
--------– .=
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(17)

with the density

(18)

It is easy to demonstrate that the formulated variational
problem is equivalent to Eq. (13).

Note that, in the majority of practically applicable
cases, the external stress field that excites the segment
oscillations can be treated as uniform in regions of
size ~l. Then, the segment shape at each instant of time
is nearly parabolic. Indeed, in the uniform static field
σ = const, the segment shape is determined by the equa-
tion

The solution to this equation under zero boundary con-
ditions at the ends (at z = ±l/2) is represented by the
function

(19)

Apparently, in a quasi-stationary external elastic field,
the oscillating segment has a shape similar to that
described by relationships (19), but the bending deflec-
tion varies with time, because the stress σ is time
dependent.

Therefore, the configuration of the segment, which
moves under the changing external load σ(z, t) at any
instant of time is approximately described by the solu-
tion of the direct variational problem with a family of
trial functions of the type

(20)

Substitution of expression (20) into relationship (14)
and integration over the z coordinate give the averaged
Lagrangian function

(21)

where

After varying the action  with
respect to U, we obtain the equation

(22)
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01
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where

Consequently, the problem of the segment motion
reduces to the equation of motion of an effective har-
monic oscillator under the action of a variable external
force.

The solution of Eq. (22) can be written for an arbi-
trary function f(t) on the right-hand side. Thereafter,
substitution of expression (20) into relationship (11)
and integration over the z coordinate lead to the follow-
ing formula for the dipole moment:

(23)

where s(t) = πU(t)/4b and C(s) and S(s) are the Fresnel
integrals [20]. By using relationship (23), the radiation
fields in the dipole approximation can be written in the
ordinary manner [16].

Now, we consider, in greater detail, the important
specific case of segment motion when the segment exe-
cutes harmonic oscillations under the action of a sinu-
soidal external stress with frequency Ω , that is,

In this case, the solution of Eq. (22) is conveniently rep-
resented in the form

(24)

where

The dipole moment of the segment executing har-
monic oscillations can be determined from relation-
ship (23) with allowance made for expression (24). In
this case, it is also of interest to derive the formulas that
describe the spectral composition of radiation. To
accomplish this, the dipole moment can be written in
the form of a Fourier series:

(25)

β B/2ρD( ), ω0
2 10G/ρDl2( ),= =

f t( ) 5bσ t( )/ρD( ).=

dz t( ) e*l
π

8s t( )
------------ 

 
1/2

–=

× s t( )( )C s t( )( )cos s t( )( )S s t( )( )sin+[ ] ,

σ t( ) σ0 Ωt δ+( ).cos=

U t( ) A Ωt ∆+( ),cos=

A
5bσ0

ρD

------------ 1

ω0
2 Ω2–( )2

4β2Ω2+
----------------------------------------------------,=

∆ δ δ', δ'tan+
2βΩ

ω0
2 Ω2–

------------------.–= =

dz dn inΩt( ).exp
n ∞–=

∞

∑=
PH
The Fourier amplitudes dn of the harmonics of the
dipole moment with frequencies ωn = nΩ are defined by
the formulas

(26)

where

and Jn(x) is the nth-order Bessel function of the first
kind [20]. As a result, we find that, in the case under
consideration, only the amplitudes of even harmonics
are nonzero, that is,

(27)

and d2n – 1 = 0 (the integral in expression (27) is trans-
formed in accordance with the known rules [21]).

Evidently, the amplitude of the dislocation segment
oscillations is high compared to the Burgers vector; i.e.,
α @ 1. Taking into account this circumstance, the
expressions for the electromagnetic radiation fields can
be somewhat simplified by calculating the correspond-
ing asymptotics at α  ∞. However, this procedure
cannot be performed immediately in relationship (27),
because the Fourier amplitudes d2n enter into infinite
sums and the asymptotics of the Bessel functions of an
arbitrary order in these sums considerably depend on
the order-to-argument ratio [20]. Consequently, in
order to deduce the formulas for the space–time evolu-
tion of the radiation fields, it is necessary to substitute
expression (27) into relationship (10) and to carry out
exact summation over the harmonics ωn = nΩ . As a
result, we find

(28)

dn
e*
2π
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b
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where

 e (29)

Relationship (28) for the electromagnetic radiation
fields remains finite, in particular, at cosτ  0,
because the Fresnel integrals in this case also tend to
zero [20].

In the asymptotic limit α  ∞, relationship (28)
can be simplified only by retaining the terms of higher
order in the α parameter after differentiation with
respect to time. The Fresnel integrals C(α cosτ) and
S(α cosτ) cannot be replaced by the corresponding
asymptotics, since their arguments are not necessarily
large (due to the arbitrariness of cosτ. Therefore, at
α @ 1, we have

(30)

Note also that formulas (28) and (30), which are the
result of complex calculations, are similar in form to
the aforementioned expression (23).

The peak strength of the electric component of the
radiation field is determined from formula (30) at
cosτ = 0, that is,

(31)

We now estimate the radiation field strength for a sys-
tem of dislocation segments in a certain typical case.
For one segment with length l ~ 104b ~ 10–4 cm, oscil-
lation amplitude A ~ 102b, and oscillation frequency
Ω ~ 104 s–1 (pumping in the kilohertz frequency range,
i.e., at Ω ! Ω0), we find E ~ 10–17 V/m at distances r ~
1 cm. For a moderate dislocation density (~108 cm–2) in
a crystal, the sample 1 cm3 in volume contains ~1012

dislocation segments and the total radiation field
strength E of these segments is equal to E ~ 10 µV/m.
This can be measured with instruments of a standard
medium accuracy class (with a sensitivity of ~1 µV/m).
Moreover, the amplitude of the electromagnetic emis-
sion sharply (~Ω2) increases with an increase in the
pumping frequency. Thus, it is obvious that the effects
under consideration can be observed directly in experi-
ments.

The spectral intensity of radiation (the intensity of
the 2nth harmonic of radiation) is represented as

(32)

The total intensity (power) of radiation of the segment
is obtained through integrating relationship (28) over

τ Ω t
r
c
--– 

  ∆.–=

Eθ r θ ϕ, ,( ) . 
πe*lα3/2Ω2 θsin

2c2r
------------------------------------------- rsin

2

τcos
---------------

× α τcos( )cos C α τcos( ) α τcos( )S α τcos( )sin+[ ] .

Eθ
e*lΩ2

2c2r
---------------∼ πA

4b
------- 

 
2

θ.sin

dI2n

4n4Ω4 d2n
2

πc3
---------------------------- θdθdϕ .sin

3
=
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angles followed by summation over the frequencies,
which leads to the expression

(33)

At α @ 1, the estimate

(34)

is valid. Substitution of the corresponding values (used
above for estimating the radiation field strength) into
expression (34) gives I ~ 10–25 erg/s.

Finally, we determine the acoustoelectromagnetic
transformation coefficient, which is equal to the ratio
between the electromagnetic radiation power and the
mechanical power required for setting segments in
motion (σ0/µ ~ 10–5), that is,

(35)

As is seen, only a very small portion of the mechanical
power expended for deforming the crystal is trans-
formed into the energy of electromagnetic radiation of
dislocations. However, as can be seen from the above
results, the strengths of electromagnetic fields gener-
ated by dislocations appear to be quite sufficient for
experimental detection of the effects under discussion.

4. DISCUSSION

The results obtained in the present work demon-
strate that any dislocation motion in ionic crystals
should be attended by an electromagnetic emission
whose intensity can be sufficiently high even for a mod-
erate dislocation density (~108 cm–2) in the sample. The
emission mechanism discussed in this work is associ-
ated with alternating the polarization macrocurrents in
the core of the moving dislocation and does not imply
the presence of any static charges of the charged jog
type at the dislocation line [11, 12]. Therefore, the pro-
posed mechanism can be realized in any nonpiezoelec-
tric ionic crystal in which dislocations have edge com-
ponents. In principle, the electromagnetic emission
accompanies any motion of dislocation segments and,
in particular, thermal fluctuations of dislocation lines.
According to the estimates made in the present work,
this emission can be recorded in a properly performed
experiment. The coefficient of transformation of the
mechanical dislocation energy into the electromagnetic
radiation is very small. However, the electromagnetic
radiation intensity rapidly increases with an increase in
the frequency and amplitude of dislocation segment
oscillations.

The most efficient technique of detecting electro-
magnetic emission of dislocations in ionic crystals
most likely involves simultaneous and coherent excita-
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tion of a large number of dislocation segments in order
to obtain an electromagnetic signal with a sufficient
amplitude. Such an excitation in a crystal can be
achieved by applying an alternate external stress with a
known frequency (for example, as is the case of exper-
iments on internal friction). This also makes it possible
to analyze the amplitude, intensity, and spectral compo-
sition of electromagnetic radiation as functions of the
frequency and amplitude of the mechanical pumping.
The experimental verification of the predicted depen-
dences of the radiation intensity [relationship (33)] on
the frequency and the amplitude of external pumping is
of considerable interest in relation to the validation of
the proposed dislocation models of electromagnetic
emission in strained crystals in its adequacy. It should
be emphasized once again that the problem of electro-
magnetic emission in solids has been rather widely dis-
cussed in respect to various applications in materials
science and geophysics. However, the development of
physical aspects of phenomena associated with this
problem (their experimental study and adequate theo-
retical description of the electromagnetic emission
mechanisms in deformed solids) is, in essence, still in
its infancy. The present work is a continuation of a
series of investigations aimed at solving the aforemen-
tioned interesting and important physical problems.
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