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ABSTRACT

This article investigates the dynamic properties of two-dimensional nonlinear magnetic metamaterials consisting of nanoscale elements. The
authors propose a model for a two-dimensional lattice of capacitively and inductively coupled split rectangular nanoresonators. It has been
shown that the long-wave dynamics of this two-dimensional lattice are described by a regularized two-dimensional nonlinear Klein–Gordon
equation, which has been solved in the form of two sequences of two-dimensional dynamic solitons on a pedestal of homogeneous forced
oscillations, using an asymptotic method and taking into account the action of electromotive force (EMF) induced by an electromagnetic
wave. The authors have calculated a diamagnetic response to an electromagnetic field in the terahertz range in the metamaterial region,
where a breather is excited and oscillates in antiphase to a homogeneous background. The evolution of long-lived metastable breathers has
been numerically studied, and two scenarios – collapse and decay – have been established for the development of their instability depending
on the parameters of the induced EMF and inductive coupling between nanoresonators. It has been found that at the boundary between
these scenarios, the final result of the transformation of the breathers is the chimera state of the metamaterial with a large-amplitude
breather that generates stochastic waves.

Published under license by AIP Publishing. https://doi.org/10.1063/10.0001369

INTRODUCTION

In the early 21st century, a remarkable scientific and techno-
logical achievement was the experimental implementation of the
idea of artificial metamaterials with a negative refractive index for
electromagnetic waves in the radio to microwave range.1–3 Such
metamaterials have unique properties4 that can be used to create
super lenses unconstrained by the diffraction limit, metamaterial
cloaking, electromagnetic sensors, compact antennae, and other
devices. At a macroscopic level, two-dimensional metamaterials are
structured as a lattice of inductively coupled split-ring resonators,
which provide negative magnetic permeability in the corresponding
frequency range, while those with a lattice of metal rods, which has
a negative dielectric constant, together form a negative refractive
index medium.

Various research groups have recently been struggling to
develop metamaterials consisting of nanoscale elements in order to
get as close as possible to the terahertz and optical range of electro-
magnetic waves. The development of artificial metamaterials with

nanoscale structural elements and the study of their properties have
fostered a new subject area in nanophysics. The nanostructured
elements of a magnetic metamaterial that have already been
technologically implemented are metal square open loops with
characteristic sizes of the order of hundreds of nanometers, for
which the resonant frequency of electromagnetic waves is in the
terahertz range.5

Reducing the sizes of metamaterial elements when approach-
ing the optical range creates difficulties in achieving the required
values of both the negative permittivity and magnetic permeabil-
ity. In nanoscale split resonators, linear magnetic resonance in
waves with a length of about a micron is very weak6,7 but still
capable of providing negative magnetic permeability.

At the same time, the idea has been recently expressed
that regions with negative magnetic permeability may manifest
with the appearance of nonlinear excitations in one- and
two-dimensional magnetic metamaterials.8,9 In particular, it has
been shown that lattices of inductively coupled split-ring resona-
tors with nonlinear elements (e.g. diodes) can be considered as
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nonlinear transmission lines such as two dimensional networks.
Numerical simulation has revealed that an alternating magnetic
field in them can excite discrete breather-type pulses localized
in several resonators and cause their local diamagnetic response.
Nonlinear magnetic metamaterials can be implemented in
various ways,10 ranging from incorporating Josephson junctions
into split resonators as nonlinear elements11 to creating meta-
materials in the form of chains of magnetic molecular clusters
(so-called magnetic molecules),12,13 or “ferromagnet-
superconductor” superlattices.14

In Ref. 16, in contrast to the analysis of the nonlinear dynam-
ics of metamaterials performed in most studies using numerical
calculations,9,10,15 we proposed an analytical approach to describing
the effect of local negative magnetic permeability in one-
dimensional nonlinear magnetic metamaterials. It was shown that
the long-wave dynamics and magnetic properties of one-
dimensional systems composed of inductively and capacitively
coupled split-ring resonators are described by the dispersive regu-
larized nonlinear Klein–Gordon equation.17 An asymptotic method
was used to find dynamic soliton solutions on a “pedestal,” i.e.,
one-dimensional breathers which are excited by a high-frequency
magnetic field and oscillate in antiphase with respect to homoge-
neous oscillations, thereby resulting in the occurrence of extended

regions with negative magnetic susceptibility and permeability
in the nonlinear metamaterial. Augmented by a medium with a
negative permittivity, this system forms a “left-handed” meta-
material in which regions with breather excitations are transpar-
ent to electromagnetic radiation, which makes it possible to
observe them experimentally. Below, it is shown how this analyt-
ical approach is generalized to the case of two-dimensional
metamaterials with nanostructured elements, for which the
development of a local diamagnetic response theory is not only
of theoretical, but is also of practical interest, because two-
dimensional magnetic metamaterials can serve as coatings with
unique properties with respect to electromagnetic waves close to
the terahertz and optical ranges.

REGULARIZED NONLINEAR KLEIN–GORDON
EQUATIONS FOR A TWO-DIMENSIONAL NONLINEAR
METAMATERIAL

Theoretically, a two-dimensional system of split-ring resona-
tors with nonlinear elements was considered in Ref. 9 as an electri-
cal network of inductively interacting LC circuits. For such a
two-dimensional system, the discrete equations describing the elec-
tromagnetic excitations in a metamaterial have the form

L
dIn,m
dτ

þ RIn,m þ Un,m � Lx
dIn�1,m

dτ
þ dInþ1,m

dτ

� �
� Ly

dIn,m�1

dτ
þ dIn,mþ1

dτ

� �
¼ E(τ),

In,m ¼ dQn,m

dτ
,

8>><
>>: (1)

where In,m is the alternating current in the circuit with coordinates
n and m, Qn,m is the charge, L and Lx,y are the self-inductance and
mutual inductance, R is the ohmic resistance, E(τ) ¼ E0 sinΩτ
is the EMF induced by the alternating magnetic field
H(τ) ¼ H0cos(Ωτ) so that E0 ¼ μ0ΩSH0, where μ0 ¼ 4π� 10�7

H/m is the magnetic permeability in vacuum, and S is the area of
the split-ring resonator, Un,m ¼ U(Qn,m) is the capacitive voltage
nonlinearly depending on the magnitude of the charge.

In this paper, we consider the modification of a two-
dimensional metamaterial consisting of nanoscale closely spaced
rectangular resonators, which includes additional capacitive cou-
pling between the resonators relative to model (1). It is shown in
Fig. 1. It is generalized to the two-dimensional case of the one-
dimensional model previously proposed by the authors of Ref. 16.

Capacitive coupling almost always exists between such resona-
tors, and it has the same order of magnitude as inductive cou-
pling.18 Local nonlinearity for each nanoelement in a metamaterial
can be created by inserting a dielectric with Kerr nonlinearity into
gaps of the split circuits, as shown in Fig. 1. The effect of nonline-
arity is described by the cubic terms of the expansion in the depen-
dence U(Qn,m) ¼ Qn,m(1� η(Qn,m/Qc)

2)/C0, where C0 is the linear
capacitance of the split resonator as an oscillatory circuit, Qc is the
characteristic charge, and η is the numerical factor for the cubic

nonlinearity. For the generalized model [similarly to the first
system Eq. (1)], we write the following equation for the voltage in
the circuit with n and m coordinates, highlighting the second dif-
ferences in the expressions for capacitive and inductive coupling
and renormalizing the coefficients of induction and capacitance
related to this node:

~L
d2Qn,m

dτ2
þ R

dQn,m

dτ
þ ~C

�1
Qn,m

� η

C0Q2
c
Q3

n,m � C�1
x (Qn�1,m þ Qnþ1,m � 2Qn,m)

� C�1
y (Qn,m�1 þ Qn,mþ1 � 2Qn,m)

� Lx
d2

dτ2
(Qn�1,m þ Qnþ1,m � 2Qn,m)

� Ly
d2

dτ2
(Qn,m�1 þ Qn,mþ1 � 2Qn,m) ¼ E0 sinΩτ: (2)

The renormalized coefficients have the following form:
~L ¼ L� 2(Lx þ Ly) and ~C

�1 ¼ C�1
0 � 2(C�1

x þ C�1
y ), where Cx and

Cy characterize the capacitive coupling between the resonators in
the corresponding directions. It should be noted that Eq. (2) in its
original form has eleven independent parameters.
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In the absence of EMF, the dispersion law for linear oscilla-
tions of this discrete model has the following form:

Ω(kx , ky) ¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2xs

2(kx)þ ν2ys
2(ky)

1þ λxs2(kx)þ λys2(ky)

s
, (3)

where the minimum frequency of self-oscillations in the metamate-

rial is as follows: Ω0 ¼ 1/
ffiffiffiffiffiffi
~L~C

p
; and parameters λx,y ¼ Lx,y/~L;

νx,y ¼Ωx,y/Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
~C/Cx,y

q
, Ωx,y ¼ 1/

ffiffiffiffiffiffiffiffiffiffi
~LCx,y

q
; s(kx,y); 2sin 1

2kx,yd
� �

,

d is the distance between the nanoresonators. Obviously, the spec-
trum (3) is bounded in frequency not only from below, but also
from above.

It can be seen that in Eq. (2), the second time derivative of the
second-order difference for the charge is a direct discrete imple-
mentation of the fourth mixed derivative. Therefore, in the long-
wave limit, when the distance between the resonators (d) is much
smaller than the oscillation wavelength, by complete analogy with
the one-dimensional case16), Eq. (2) for the charge Qn,m directly
reduces to the regularized two-dimensional nonlinear Klein–
Gordon equation for the charge variable un,m ¼ Qn,m/Qc !
u(x, y, t), with additional terms describing the attenuation (ohmic
resistance) and external variable force (EMF):

utt þ γut � uxx � uyy � βxuxxtt � βyuyytt þ u� σu3

¼ e0sin(ωt): (4)

The variable u(x,y,t) depends on the dimensionless coordinates
x ¼ nd/lx , y ¼ md/ly and time t ¼ Ω0τ; the subscripts in the func-
tion u denote the corresponding partial derivatives; the characteris-

tic lengths are lx,y ¼ νx,yd ; d
ffiffiffiffiffiffiffiffiffiffiffiffi
~C/Cx,y

q
� d, the oscillation

damping coefficient is γ ¼ R~C/~L; parameters σ ¼ η~C/C0, ω ¼
Ω/Ω0 and e0 ¼ E0~C/Qc are the dimensionless pump frequency and
amplitude. For the amplitude and dispersion parameters, we obtain
the following expressions:

e0 ¼ μ0H0ΩS~C
Qc

¼ μ0S
Qc

ffiffiffiffi
~C
~L

s
ωH0,

βx,y ¼ Lx,yCx,y

~L~C
¼ Lx,y

~L

d
lx,y

� �2

:

(5)

Mixed derivatives, which naturally arise due to the inductive inter-
action between nanoresonators, take into account a higher disper-
sion contribution and significantly affect the linear excitation
spectrum of Eq. (4) in the absence of external pumping, thereby
making it bounded both from below and above. Its explicit form in
dimensional variables obviously follows from Expression (3), where
s(kx,y) simply needs to be replaced by kx,yd.

The dispersion parameters βx,y can have the same or opposite
signs, determined by the signs of the inductances Lx,y, which
depend on the mutual orientation of the neighboring resonators.
For planar orientation, as shown in Fig. 1, they are positive, and the
spectrum of the model in dimensionless variables is limited by the
minimum frequency ω0 = 1 and the maximum frequency
ωmax / 1/

ffiffiffiffiffiffiffi
βx,y

p
.

For axial orientation, when the axis passes through the centers
of adjacent circuits, these parameters are negative. In the long-wave
approximation, the dispersion parameters βx,y are small, and the
width of the continuous spectrum area is large. However, due to
the limited excitation spectrum in the regularized equation and the
same spectrum property in the discrete model, the nonlinear
dynamics in these systems can have the same features, as was

FIG. 1. Model of a two-dimensional
terahertz metamaterial.
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predicted and described by the theory of the crystal lattice.19,20

Therefore, the range of the dispersion parameters can be signifi-
cantly expanded, and the results obtained by the regularized equa-
tion may be valid for the initial discrete model of the metamaterial.

It turns out that – despite the anisotropy of capacitive and
inductive coupling, the large number of parameters, and the com-
plexity of the long-wave Eq. (3) – the problem of forced localized
breather oscillations in magnetic metamaterials at pump frequen-
cies close to the lower edge of the spectrum can be significantly
simplified and reduced to universal dependences.

FORCED BREATHER OSCILLATIONS IN A
TWO-DIMENSIONAL MAGNETIC METAMATERIAL

Using a Kosevich–Kovalev asymptotic procedure16,17 in the
non-dissipative case, i.e. assuming that Eq. (4) is solved in the form
of a series of time harmonics at pump frequency and a small
parameter of frequency splitting from the edge of the spectrum,
κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω2
p � 1,

u(x, y, t) ¼ A(x, y){[1þ κ2B(x, y)] sinωt

þκ2C(x, y) sin 3ωt þ . . .},
(6)

we obtain the following nonlinear equation for the fundamental
harmonic amplitude:

(1� βxω2)Axx þ (1� βyω2)Ayy � (1� ω2)Aþ 3
4
σA3 þ e0

¼ 0: (7)

After introducing new coordinates and renormalizing harmonic
and force amplitudes,

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

1� βxω2

s
x, Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

1� βyω2

s
y, (8)

A ¼ af ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3σ

(1� ω2)

r
f , e0 ¼

ffiffiffiffiffi
4
3σ

r
(1� ω2)

3/2
p (9)

we finally obtain the equation

Δf � f þ f 3 þ p ¼ 0, (10)

where Δ is the two-dimensional Laplacian in the new coordinates.
This equation has three homogeneous solutions, the smallest of
which determines a stable homogeneous background of oscillations
far from the center of the system:

f0 ¼ 1ffiffiffi
3

p cos
γ

3
� sin

γ

3
, γ ¼ arccos

3
ffiffiffi
3

p

2
p

� �
: (11)

As can be seen, the parameter p can vary from zero to a maximum
value of pc = 2/33/2.

After the homogeneous background f (X, Y) ¼ f0 þ fs(X, Y) is
isolated from the solution, its soliton portion fs(X, Y) must satisfy

zero boundary conditions. We are interested in the radially sym-
metric solution to Eq. (10), which now reduces to the following:

d2f
dr2

þ 1
r
df
dr

� f þ f 3 þ p ¼ 0, (12)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
. At infinity, the function f (r) reaches the

constant value f0, and since the first derivative in Eq. (12) can be
neglected in this limit, the asymptotic behavior of f (r) coincides
with the asymptotic behavior of the solution to the equation for the
one-dimensional metamaterial as obtained in Ref. 16. When
approaching zero, the solution reaches a constant value, having a
zero derivative.

It is convenient to analyze possible soliton solutions, which
satisfy the above boundary conditions, by interpreting Eq. (12) as
the equation of motion of a particle in a nonlinear potential
(Fig. 2).

If we omit the term with the first derivative and rewrite
Eq. (12) as

f€� f þ f 3 þ p ¼ 0, (13)

where the points mean differentiation by some effective time ~t,
then it is easy to see that this equation of particle motion has the
following energy integral E with the potential energy U (f ), as
shown in Fig. 2:

E ¼ 1
2
_f
2 þ U(f ), U(f ) ¼ � 1

2
f 2 þ 1

4
f 4 þ pf : (14)

Due to the integral of motion, both soliton solutions to Eq. (13) are
explicit and describe the amplitudes of the fundamental harmonics
of the only two possible breathers on a pedestal in a one-
dimensional metamaterial.16 As can be seen in Fig. 2, the integral E
is taken as equal to E0, in order to satisfy the necessary boundary
conditions, i.e. when the amplitude reaches the constant value f0, or

FIG. 2. Motion of a particle in a nonlinear potential.
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to put it in terms of particle dynamics, when it infinitely
approaches the local maximum of potential energy.

In the two-dimensional case, the need to take into account the
first derivative in Eq. (12) is interpreted as the impact of effective
friction on particle dynamics. When multiplied by the first deriva-
tive, this equation can be rewritten follows: _E ¼ �2F ; � _f

2
/~t. The

positivity of the dissipative function F leads to a decrease in energy;
therefore, the initial values of the particle energy are obviously
chosen to be larger than E0 values. It is easy to understand that
there are, respectively, two sequences of positive and negative initial
amplitudes, starting from which (at zero initial velocity) the coordi-
nate of a particle will reach the constant asymptotic value f0. It
follows from Fig. 2 that there are two main solutions whose ampli-
tudes are completely located on one of the sides of the barrier.
With a subsequent increase in the initial amplitude, the particle
certainly overcomes the barrier and can reach a maximum with
both a positive and a negative derivative. Thus, both sequences can
be characterized according to this criterion. It should be noted that,
when external force is absent and the potential is symmetric, the
problem of the sequence of soliton states in the two-dimensional
case was solved more than half a century ago.21 Within this limit,
both sequences found in this study degenerate into one because the
solutions in the symmetric case are determined up to a sign.

The results of the numerical integration of Eq. (12) with the
above boundary conditions are shown in Figs. 3–5, where the
parameter p = 0.35 is chosen close to pc – the boundary of the exis-
tence of three homogeneous solutions. In a two-dimensional meta-
material, the main soliton modes on a pedestal are, similarly to the
one-dimensional case,16 a completely positive solution (line 1,
Fig. 3), or a “plus mode,” and a mode with the negative portion of
the amplitude at the origin (line 2, Fig. 3), or a “minus mode.” It is
the latter that corresponds to the oscillation in which the core
region oscillates in antiphase to the homogeneous background and
provides the local diamagnetic response of the metamaterial.

According to the earlier analysis, and in contrast to a one-
dimensional metamaterial, a two-dimensional metamaterial has the
main breathing modes along with more complex radially symmetric

solitons on a pedestal. Such solitons can be classified not only by the
above criterion, but also by the number of zeros (Figs. 4 and 5); there-
fore, for convenience, they can be called “excited” oscillation modes.

It should be noted that with this choice of the parameter p,
the minus-breather in Fig. 4 and the plus-breather in Fig. 5 turn
out to be very close in shape but differ in the main criterion – the
sign of the derivative at infinity.

LOCAL DIAMAGNETISM IN A TWO-DIMENSIONAL
METAMATERIAL

Having a numerically determined solution for a two-
dimensional dynamic soliton on a “pedestal” with a negative ampli-
tude in the center, we can determine the magnetic permeability of
a metamaterial containing such a breather excitation. This solution
depends on only one parameter, p, and therefore it is universal
enough to enable us to analyze various limiting cases of analytical

FIG. 3. Main oscillation modes of 2D solitons on a pedestal.

FIG. 4. First “excited” modes of 2D solitons.

FIG. 5. Second “excited” modes of 2D solitons.
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dependences when it comes to the dimensional characteristics of
the metamaterial and pumping parameters. In particular, the solu-
tion remains equally valid for both isotropic and highly anisotropic
capacitive and inductive coupling, as well as for the inductances Lx
and Ly, which are opposite in sign and correspond to a metamate-
rial with the same axial orientation of split resonators.

Magnetic permeability is calculated in a standard way.9,16 The
expression for magnetic induction is as follows:

B ¼ μ0(H(τ)þM(x, y, τ)), (15)

where M (x, y, τ) is the magnetization of the metamaterial at a
point with coordinates (x, y), which is determined by the current
strength I (x, y, τ) in the circuit and is equal to
M(x, y, τ) ¼ Sd�3@Q(x, y, τ)/@τ. By substituting the solution
Q(x, y, τ) ¼ QcA(x, y) sinΩτ for induction, we obtain the following
expression:

B ¼ μ0μr(x, y, Ω)H0 cosΩτ (16)

with the relative permeability and magnetic susceptibility

μr(x, y, Ω) ¼ 1þ χ(x, y, Ω), (17)

χ(x, y, Ω) ¼ ρA(x, y, Ω) ¼ ρaf (x, y, Ω), (18)

where the dimensionless parameter ρ and the estimate of the
amplitude a have the form

ρ ;
SΩ
H0d3

Qc, a � μ0H0ΩS

Qc~L(Ω2
0 � Ω2)

: (19)

After estimating the area of the resonator by the formula S � d2,
we finally obtain the following expression:

χ(x, y, Ω) ¼ ρA(x, y, Ω) � Ω2

Ω2
0 � Ω2

μ0d
~L

f (x, y, Ω): (20)

Magnetic terahertz metamaterials (Ω0≥ 1012 Hz) have the
characteristic nanoscale dimensions of structural elements, as well
as distances between them of the order of d≈ 4� 10−7 m, and an
inductance of ~L≈ 10−12 H. Hence μ0d/~L≈ 0.5, and finally it turns
out that ρa >> 1 due to the close proximity of Ω to Ω0. Thus, the
sign of the magnetic permeability is completely determined by
the dependence A (x,y,Ω), and the diamagnetic response in the
breather localization region substantially exceeds the positive
response of the homogeneous background (Fig. 6).

Figure 6 shows a soliton contribution to magnetization oscilla-
tions, which are locally antiphase with respect to the homogeneous
background in the center of the two-dimensional metamaterial. The
evolution of a breather on a pedestal has been calculated for a
system which measures 300 × 300, is composed of resonant circuits
with βx,y = 0.25, and is located in the field of a terahertz electromag-
netic wave with a frequency of Ω = 0.997 Ω0, a period of TΩ = 2π/Ω,
and a pump amplitude characterized by the dimensionless para-
meter p = 0.25. Two breather profiles are given for the time after

150 periods of oscillations with an interval of half a period. During
the entire oscillation time, the breather remained virtually
unchanged, and its amplitude did not actually differ from the initial
profile, which was chosen as an analytically obtained solution. As
can be seen in the figure, there are up to a hundred of resonators in
the central region of the negative magnetic permeability, which is
indeed a macroscopic characteristic of the magnetic metamaterial.

METASTABILITY OF TWO-DIMENSIONAL BREATHERS
AND SCENARIOS FOR THE DEVELOPMENT OF THEIR
INSTABILITY

The lifetime of the detected breather excitations plays an
important role in observing the effect of local diamagnetism in two-
dimensional metamaterials. The obtained approximate solutions to
the regularized nonlinear Klein–Gordon equation describe station-
ary oscillations. At the same time, it is known that in two-
dimensional nonlinear equations with only the second spatial deriv-
atives, particularly in a two-dimensional sine-Gordon equation,
breathers are not stable,22 and the search for their stabilization
parameters is a separate problem.23 In some magnetic models,24 the
inclusion of higher spatial derivatives can stabilize solitons because
strong dispersion can compensate for nonlinearity in such equations
and prevent the collapse of localized states. Therefore, inductive
coupling in a metamaterial, which generates the fourth mixed deriv-
atives, should be fully taken into account even at small dispersion
values. On the other hand, it should be noted that if these values
are not small, then the spectral area of linear oscillations will be
narrow. Then the frequency of the third harmonic of a soliton on a
pedestal will be above the area, which guarantees the absence of

FIG. 6. Contribution of a breather on a pedestal to magnetization oscillations,
which demonstrate regions with positive and negative permeability, i.e. nonlinear
diamagnetic response in the center of the lattice of split rectangular resonators.
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direct excitation of linear waves by a breather and its loss of energy
through radiation. It follows from the above that the stability of two-
dimensional breathers under pumping conditions depends on many
factors and almost all parameters of the original problem.

It follows from the results simulating the dynamics of a
breather on a pedestal (as obtained as part of the discrete integra-
tion scheme, and as shown in Fig. 6) that there exists a range of
values that are quite permissible in the developed theory, where
long-lived forced oscillations bring about local negative magnetic
permeability and the diamagnetic response of a two-dimensional
metamaterial. At the same time, since the regularized Eq. (4) with
pumping is not integrable, it should be expected that its soliton
solutions are metastable. To solve this problem by numerical simu-
lation, we studied the evolution of radially symmetric breathers on
a pedestal, in the framework of Eq. (4) in dependence on the dis-
persion parameters βx,y = β, and the amplitude and frequency of
pumping. The fundamental harmonic of the solution (6) and its
time derivative with amplitudes satisfying Eq. (12) were taken as
the initial condition. The difference between the exact and approxi-
mate solutions served as the initial perturbation, the evolution of
which made it possible to examine the stability of the exact solu-
tion. Due to the radial symmetry of the solutions, it is radially sym-
metric exponentially increasing components that are the source of
instability of such solitons. This fact is also confirmed by the inte-
gration of the original equation on a square lattice (Fig. 6), as a
result of which the solution always maintains a radially symmetric
shape. This enables us to study the evolution of breathers within
the framework of the “radial” regularized nonlinear Klein–Gordon
equation with periodic external force:

utt � Δr(uþ βutt)þ u� σu3 ¼ e0sin(ωt), (21)

where Δr is the radial part of the two-dimensional Laplacian.

The numerical calculation confirmed that the closer the fre-
quency ω to the uniform resonance frequency ω0, the longer the
breather lifetime and the closer the analytical expression for the
fundamental harmonic to the exact solution. With an increase in
the breather amplitude, the time of the onset of instability rapidly
decreases, therefore, the main calculations were performed for a fre-
quency of ω = 0.997 and, accordingly, for an oscillation period of
T = 2π / ω≅ 6.302.

The results of a numerical simulation of the dynamics of
breathers are presented in Figs. 7–13. Figure 7(a) shows the profiles
of a minus-breather on a pedestal of homogeneous oscillations as
radial equation solutions after 150 periods of oscillations. In fact,
they reproduce a breather solution on a square lattice (Fig. 6).
However, in the same figure, which shows the radial dependence of
the breather profiles in one oscillation period at an interval of 1/8
of a period, we can see how an instability mode manifests itself.
According to Fig. 7(a), at the very moment when the solution pro-
portional to sin (ωt) should vanish, there is a small non-zero com-
ponent proportional to cos (ωt), which, along with a small
component proportional to sin (ωt), forms a radially symmetric
instability mode. The amplitude of this instability mode grows
exponentially with a rather small increment. In the time series of
oscillations of the breather amplitude at the origin in Fig. 7(b), we
can see the beginning of this growth. Although in general, the
breather remains visually almost unchanged and, as can be seen,
has a long lifetime.

Over the course of further evolution, the instability mode
grows, and the breather itself grows in amplitude [Fig. 8(a)], and as
can be seen in the time series [Fig. 8(b)], it finally loses stability
after a transition period with a decrease in amplitude, which is
accompanied by an infinite increase in amplitude, i.e. by collapse.
Further investigation of the dependence of the instability develop-
ment on the value of the dispersion parameter explains this result.

FIG. 7. (a) Profiles of a minus-breather after 1/8 of a period after t = 150T and (b) time series of oscillations of the amplitude of this breather at the origin. (β = 0.25 and
p = 0.25).
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At very small values of the dispersion parameter β, when
mixed derivatives can be neglected, the regularized equation tends
to the limit of the conventional nonlinear Klein–Gordon equation,
in which, as is known, the instability of a two-dimensional breather
terminates in collapse.22 This is exactly what is seen in Fig. 9(a),
which shows the time dependence of the amplitude in the center of
a soliton at β = 0.0075.

However, at large β, taking into account higher dispersion
leads to a fundamental change in the scenario for instability

development [Fig. 9(b)]. In this case, the change in the breather
amplitude initially follows a collapse scenario, but ends with a
sharp drop in the amplitude of the transformed breather and its
further decay into radial waves.

The same transition between the scenarios is observed with
respect to the pumping parameter p at the fixed dispersion parame-
ter β (Fig. 10). It can be seen that at a pumping value close to the
limiting value, the lifetime of a metastable minus-breather
decreases substantially, and it actually transforms into a plus-

FIG. 8. (a) Profiles of a minus-breather with an instability mode after t = 250T and (b) time series of oscillations of the amplitude of this breather at the origin. (β = 0.25
and p = 0.25).

FIG. 9. (a) Time series for the amplitude of a minus-breather at very small β values (β = 0.0075) and (b) at large β values (β = 0.75). (Parameter p = 0.25).
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breather, which eventually collapses [Fig. 10(a)]. The instability at
low pump values results in the decay of the breather into radial
waves [Fig. 10(b)].

It should be noted that the transformation of the minus-
breather into the plus-breather, as the pump amplitude
approaches the maximum possible value, and the subsequent sta-
bilization of the plus-breather, are explained by the fact that
within this limit it degenerates into a homogeneous nonlinear
oscillation. As the pump amplitude decreases from its limiting
value, the effect of the minus-breather transformation into the

plus-breathe continues up to the boundary between the scenarios,
which is subject to both the p parameter and the β parameter.
At this boundary, the development of plus-breather instability
leads to the occurrence of chaotic oscillation regimes, which ulti-
mately end in collapse (Figs. 11 and 12). The occurrence of chaos
is not unexpected because it becomes possible even in one non-
linear oscillator given considerable pumping.25 Fig. 11(a) shows a
time series of the evolution of a breather at β = 0.47 and p = 0.25.
It follows therefrom that a metastable minus-breather with a long
lifetime loses stability and transforms into a long-lived

FIG. 10. Time series for the amplitude of a minus-breather at (a) p = 0.35 and (b) p = 0.1. (Fixed parameter β = 0.25).

FIG. 11. (a) Time series for breather amplitude at β = 0.47 and p = 0.25, and (b) its chaotic frequency spectrum.
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plus-breather, which, after loss of stability, turns into a large-
amplitude breather with a chaotic spectrum of oscillations
[Fig. 11(b)].

Figure 12(a) shows a time evolution of the phase portrait of
the amplitude in the center of a breather, and Fig. 12(b) shows a
frontal projection of the portrait. As can be seen, the plus-breather
and the minus-breather correspond to almost stable cycles, and the
large breather corresponds to the phase trajectories characteristic of

the stochastic layer near the separatrix for a nonlinear oscillator
with Hamiltonian chaos.25

Figure 13(a) shows completely spatially coherent profiles of a
large breather after 850 oscillation periods, and Fig. 13(b) shows
the stochastic waves it generates, on an enlarged scale. The leading
edge of the regular waves is generated by a metastable minus-
breather, and these waves continue to move after many oscillation
periods following its disappearance.

FIG. 12. (a) Evolution of an amplitude- phase portrait at the origin for β = 0.47 and p = 0.25, and (b) its frontal projection.

FIG. 13. (a) Profiles of a large-amplitude breather after 850 oscillation periods, and (b) chaotic oscillations generated thereby. (β = 0.47, p = 0.25).
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Chaotic oscillations in Fig. 13 border on a spatially coherent
localized nonlinear excitation, i.e. a breather and regular waves,
thus exemplifying a chimera state in the dynamics of a two-
dimensional nonlinear metamaterial.26

Finally, it should be noted that as their structure becomes
more complex, the remaining breathers on a pedestal (“excited”
modes) have a shorter lifetime compared to the fundamental
breather mode, which has a sufficiently long lifetime of up to hun-
dreds of oscillation periods to manifest itself in an experiment on
the detection of diamagnetic response of the metamaterial to an
electromagnetic field in the terahertz range.

CONCLUSION

The main findings and conclusions of this study are as
follows:

1. We have analytically and numerically investigated the non-
linear magnetic excitations in a two-dimensional system of nano-
scale resonators with inductive and capacitive coupling, when
applying an electromagnetic field in the terahertz range. It has been
shown that in the long-wave limit, the dynamic equations for a var-
iable charge that describe this system are reduced to the regularized
two-dimensional nonlinear Klein–Gordon equation with the mixed
fourth derivatives, which has an additional pump term as an exter-
nal force.

2. An asymptotic method has been used to obtain radially
symmetric breather-like solutions to such an equation. A two-
dimensional nonlinear equation has been derived for the amplitude
of the fundamental harmonic, and we have obtained two sequences
of dynamic solitons on a pedestal – two-dimensional breathers that
exist against the background of homogeneous oscillations. One of
them has a large negative amplitude in the central region with a
positive background amplitude, which corresponds to the local dia-
magnetic response of the metamaterial to an electromagnetic field
and provides it with local negative magnetic susceptibility and
permeability.

3. We have numerically studied the stability of breather-like
fundamental modes as a function of the dispersion parameters
(magnitude of inductive coupling), frequency, and pump ampli-
tude. It has been established that all the nonlinear excitations
obtained are metastable, but their lifetime can reach up to hun-
dreds of oscillation periods. A negative amplitude breather is the
most long-lived; and if its frequency is close to the lower boundary
of the continuous spectrum, its lifetime can reach several hundred
oscillation periods.

4. We have investigated the further evolution of a two-
dimensional metastable breather, and have established two scenar-
ios for the development of its instability, depending on the parame-
ters of dispersion and pump amplitude. If the dispersion parameter
is less than critical, the breather ultimately exhibits a collapse-like
behavior after a small increase and then decrease in its amplitude.
If the dispersion parameter is higher than the critical value, the
breather finally splits into divergent regular waves after a short
interval of amplitude growth. At the critical value of the dispersion
parameter, a long-lived large-amplitude breather suddenly turns
into a long-lived breather with a small positive amplitude, which
then also rapidly turns into a chimera state that has a spatially

coherent large-amplitude breather that generates stochastic waves
diverging from it.

Thus, it has been shown that in two-dimensional magnetic
metamaterials affected by a terahertz electromagnetic field, the exci-
tation of long-lived breather oscillations may give rise to a diamag-
netic response that corresponds to local negative magnetic
permeability. The theory of this effect has been developed for meta-
materials with both isotropic and anisotropic inductive and capaci-
tive coupling between split rectangular resonators forming a
two-dimensional metamaterial.

The described effect makes it possible to observe two-
dimensional magnetic breather excitations. If a two-dimensional
system of split nanoscale resonators is supplemented, for example,
with a lattice of conducting nanoelements that has a negative per-
mittiivity in the terahertz frequency range, then the refractive index
will be negative in the magnetic breather localization region, and
purely imaginary everywhere outside this region. As a result, the
metamaterial region with an excited breather is transparent for the
passage of an electromagnetic wave and can be detected experimen-
tally. It should be noted that the established possibility of a soliton-
type dependence in the spatial distribution of negative magnetic
permeability by the proposed metamaterial model brings the idea
metamaterial cloaking closer to practical realization, which requires
spatially dependent negative refractive indices.

ACKNOWLEDGMENTS

This work has been done using grid/cluster computing facili-
ties at the B. I. Verkin Institute for Low Temperature Physics and
Engineering, National Academy of Sciences of Ukraine, Kharkiv.

REFERENCES
1V. G. Veselago, Physics-Uspekhi 92, 517 (1967).
2J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans.
Microwave Theory Tech. 47, 2075 (1999).
3D. R. Smith, W. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev.
Lett. 84, 4184 (2000).
4S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative
Refractive Index Materials (SPIE Press & CRC Taylor & Francis Group, Boca
Raton London New York, 2009).
5T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry,
D. N. Basov, and X. Zhang, Science 303, 1494 (2004).
6S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis,
Science 306, 1351 (2004).
7C. M. Soukoulis, Optics Photonics News 17, 16 (2006).
8N. Lazarides, M. Eleftheriou, and G. P. Tsironis, Phys. Rev. Lett. 97, 157406
(2006).
9M. Eleftheriou, N. Lazarides, and G. P. Tsironis, Phys. Rev. E 77, 036608
(2008).
10M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Rev. Mod. Phys. 86, 1093
(2014).
11N. Lazarides and G. P. Tsironis, Appl. Phys. Lett. 90, 163501 (2007).
12O. V. Charkina and M. M. Bogdan, Fiz. Nizk. Temp. 44, 824 (2018) [Low
Temp. Phys. 44, 644 (2018)].
13M. M. Bogdan, V. I. Belan, and O. V. Charkina, Fiz. Nizk. Temp. 44, 1700
(2018) [Low Temp. Phys. 44, 1331 (2018)].
14A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, Phys. Rev. Lett. 95,
247009 (2005).

Low Temperature
Physics ARTICLE scitation.org/journal/ltp

Low Temp. Phys. 46, 000000 (2020); doi: 10.1063/10.0001369 46, 000000-722

Published under license by AIP Publishing.

https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1103/PhysRevLett.84.4184
https://doi.org/10.1103/PhysRevLett.84.4184
https://doi.org/10.1126/science.1094025
https://doi.org/10.1126/science.1105371
https://doi.org/10.1364/OPN.17.6.000016
https://doi.org/10.1103/PhysRevLett.97.157406
https://doi.org/10.1103/PhysRevE.77.036608
https://doi.org/10.1103/RevModPhys.86.1093
https://doi.org/10.1063/1.2722682
https://doi.org/10.1063/1.5041429
https://doi.org/10.1063/1.5041429
https://doi.org/10.1063/1.5041429
https://doi.org/10.1063/1.5078629
https://doi.org/10.1063/1.5078629
https://doi.org/10.1103/PhysRevLett.95.247009
https://aip.scitation.org/journal/ltp


15N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and
Y. S. Kivshar, JETP Lett. 93, 743 (2011).
16M. M. Bogdan and O. V. Charkina, Fiz. Nizk. Temp. 40, 303 (2014) [Low
Temp. Phys. 40, 234 (2014)].
17M. M. Bogdan and O. V. Charkina, Fiz. Nizk. Temp. 34, 713 (2008) [Low
Temp. Phys. 34, 564 (2008)].
18P. Gay-Balmaz and O. J. F. Martin, J. Appl. Phys. 92, 2929 (2002).
19P. Rosenau, Phys. Rev. B 36, 5868 (1987).
20M. M. Bogdan, A. M. Kosevich, and G. A. Maugin, Wave Motion 34, 1
(2001).
21R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).

22V. G. Makhankov, Phys. Rep. 35, 1 (1978).
23B. Piette and W. J. Zakrzewski, Nonlinearity 11, 1103 (1998).
24A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Magnetisation
Waves. Dynamic and Topological Solitons (Naukova Dumka, Kiev, 1983).
25Y. I. Neimark and P. S. Landa, Stochastic and Chaotic Fluctuations (Nauka,
Moscow, 1987).
26Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380
(2002).

Translated by AIP Author Services

Low Temperature
Physics ARTICLE scitation.org/journal/ltp

Low Temp. Phys. 46, 000000 (2020); doi: 10.1063/10.0001369 46, 000000-723

Published under license by AIP Publishing.

https://doi.org/10.1134/S0021364011120125
https://doi.org/10.1063/1.2957009
https://doi.org/10.1063/1.2957009
https://doi.org/10.1063/1.2957009
https://doi.org/10.1063/1.1497452
https://doi.org/10.1103/PhysRevB.36.5868
https://doi.org/10.1016/S0165-2125(01)00066-X
https://doi.org/10.1103/PhysRevLett.13.479
https://doi.org/10.1016/0370-1573(78)90074-1
https://doi.org/10.1088/0951-7715/11/4/020
https://authorservices.aip.org/translationservices
https://aip.scitation.org/journal/ltp

	Metastable breathers and local diamagnetism in two-dimensional nonlinear metamaterials
	INTRODUCTION
	REGULARIZED NONLINEAR KLEIN–GORDON EQUATIONS FOR A TWO-DIMENSIONAL NONLINEAR METAMATERIAL
	FORCED BREATHER OSCILLATIONS IN A TWO-DIMENSIONAL MAGNETIC METAMATERIAL
	LOCAL DIAMAGNETISM IN A TWO-DIMENSIONAL METAMATERIAL
	METASTABILITY OF TWO-DIMENSIONAL BREATHERS AND SCENARIOS FOR THE DEVELOPMENT OF THEIR INSTABILITY
	CONCLUSION
	References


