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The nonlinear effect of the energy localization on topological inhomogeneities is investigated in the sine-
Gordon systems. The regimes of nonlinear oscillations of nonequilibrium configurations of domain walls in the 
quasi-one-dimensional ferromagnet are described in terms of kink and breather solutions of the sine-Gordon 
equation. The conditions of the energy localization, i.e., the formation of breather excitations on these topologi-
cal inhomogeneities, are found for the initial configurations of the dilated double kink structures. The results are 
obtained in the framework of the Schrödinger-type equation of the direct scattering problem associated with the 
sine-Gordon equation. It is shown that the final state of the evolution of the nonequilibrium topological spin 
structure represents the multi-frequency precessing domain wall in the ferromagnet, which radiates the continu-
ous spectrum waves. 

Keywords: nonlinear dynamics, sine-Gordon equation, ferromagnet, precessing domain wall, wobbling kink, 
radiation. 

Introduction 

Topological structures in condensed matter physics are 
well known and presented by domain walls in magnets, 
dislocations in crystals, and fluxons in long Josephson 
junctions. They are described theoretically as the kink so-
lutions in the framework of the corresponding nonlinear 
equations. In order to obtain explicit analytical results, the 
equations are reduced to the integrable one, usually one-di-
mensional sine-Gordon (SG) equation [1]. The latter pos-
sesses simple kink and antikink solutions, and their oscil-
lating bound state, the breather, and, moreover, the exact 
multisoliton formula, which describes explicitly the sta-
tionary dynamics and interactions of all types of nonlinear 
and linear excitations of the sine-Gordon model. 

In spite of integrability of the sine-Gordon equation, 
the analytical description of the non-stationary dynamics of 
kinks is not a simple task [2]. The analysis of a nonlinear 
stage of the evolution of nonequilibrium kink profiles can 
be performed after the solution of the direct scattering 
problem associated with the SG equation [2, 3]. It turned 
out [2] that nonequilibrium kinks can oscillate during a 

long time and weakly radiate linear waves, and generate 
the localized wave packets, and give birth to breathers. 

Small stationary localized oscillations of the SG kink 
are absent, as well as corresponding frequencies of such 
internal modes in its linear excitation spectrum. However, 
nonlinear oscillations of the kink are possible and they 
correspond to the wobbling kinks or the wobbles [4, 5], 
which represents an oscillating topological structure 
formed by a kink and a breather settled on the top of the 
kink. The general pattern of the nonequilibrium kink evo-
lution includes the process of the breather emergence and, 
hence, the corresponding energy localization on the kink, 
and the process of radiation of continuous spectrum waves, 
which carry away all the exceed energy [2]. 

The present study of the nonstationary kink dynamics in 
the sine-Gordon systems is aimed to show that the wobbling 
kink can be interpreted as the precessing domain wall in 
the one-dimensional anisotropic ferromagnet and to point 
out the conditions and methods of generation of such a 
nonlinearly oscillating topological structure. In this regard, 
it is interesting to notice that the existence and properties 
of the precessing domain wall in the one-dimensional 
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anisotropic antiferromagnet have been already discussed in 
detail [6–8]. 

The paper is organized as follows. In the first section, 
we consider the model of the one-dimensional anisotropic 
ferromagnet and reduce its Hamiltonian to one of the dis-
crete Takeno–Homma model. Then we obtain, traditionally 
in the long-wavelength limit, the double sine-Gordon and 
the sine-Gordon equation for the azimuthal angle variable 
of the chain spin rotation. Using the exact wobbler and 
kink solutions of these equations, we formulate the prob-
lem of the nonstationary evolution of the nonequilibrium 
spin topological structure to the 360° domain wall, which 
is stable in the magnetic field. In the next section, we find 
the conditions of the emergence of breathers by the non-
equilibrium initial topological structure and determine the 
dynamical parameters and the energy of the precessing do-
main wall in a ferromagnet. Then we investigate the pecu-
liarities of the process of radiation of the continuous spec-
trum waves and finally calculate the energy of the radiation 
that appears during the evolution of the double kink spin 
structure. 

Domain walls in anisotropic ferromagnetic chain 
in magnetic field 

The quasi-one-dimensional ferromagnets, such as CsNiF3 
and TMNC [9, 10] can be considered above the 3D mag-
netic ordering temperature as a system of independent fer-
romagnetic chains with the Hamiltonian 
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Here ( )0 sin cos ,sin sin ,cosn n n n n nS= θ ϕ θ ϕ θS  is the 
classical spin with the value 0S  at the nth site, nϕ  and nθ  
are the azimuthal and polar angles of the spin vector, re-
spectively, J  is the exchange interaction constant, A and D 
are the easy-axis and easy-plane anisotropy constants, re-
spectively, H  is the constant magnetic field, g is the gyro-
magnetic ratio, and Bµ  is the Bohr magneton. 

In the case of the strong easy-plane anisotropy D A>> , 
when only a weak deviation of the spin vector from the 
easy plane is allowed 
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we, following the scheme outlined in [11–13], approxi-
mately reduce the Hamiltonian (1) to the Hamiltonian of 
the Takeno–Hommа model [14]: 
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As seen from Eq. (3), such a model is described by only 
one scalar variable nϕ , and the point in the expression (4) 
means the differentiation with respect to time τ. In the long-
wavelength limit, when J A>> , from the Hamiltonian (3) 
we obtain the following dimensionless double sine-Gordon 
equation: 

 sin cos sin 0TT XX hϕ −ϕ + ϕ ϕ+ ϕ = . (4) 

Here 0/T = τ τ  and 0X l n= , where the unit of time is 

0 0( )S DAτ =   and 0l a J A=  is the magnetic length, 

and the parameter of magnetic field is 0 0/h g H AS= µ . 

In the case of the absence of magnetic field, 0h = , 
Eq. (4) is reduced to the usual integrable SG equation for 
the variable 2u = ϕ: 

 sin 0TT XXu u u− + = .  (5) 

Therefore, in terms of the azimuthal angle ϕ  there are the 
π-kink and π-antikink solutions of the SG equation, which 
correspond to domain walls of opposite signs: 

 ( ) ( )2arctan expX X±ϕ = ± .  (6) 

In the nonzero magnetic field h, two identical domain 
walls form the static bound state, the wobbler [15, 16], 
which is exact solution of Eq. (4): 

( ) ( ) ( )2arctan exp 2arctan exp .W W W W WX X R X Rϕ = κ − + κ +
   (7) 

The parameters of the wobbler are the following func-
tions of the magnetic field: 

 ( ) 1W h hκ = + ,  1 1( ) lnW
hR h
h

 + −
=   

 
,  (8) 

where Wκ  is the reverse effective length of the domain 
wall and WR  is a half of the wobbler width. The wobbler 
configuration (7) means nothing but the 360° domain wall, 
the dimension of which is determined by the balance of the 
force of mutual repulsion of the identical 180° domain walls 
and the bringing-together action of the magnetic field. 

When the field is small, 1h << , then 1Wκ ≈  and 
ln ( / 2)WR h≈ . For example, for 0.01h =  the parameter WR  

is equal 3 and Wκ  is the unity with the accuracy 0.1 %, and 
the 180° domain walls are well separated and the distance 
between them is large enough in comparison with their 
effective lengths. Thus, in the small field, the 360° domain 
wall configuration has the form 

 ( ) ( ) ( )0 2arctan exp 2arctan expX X R X Rϕ = − + + . (9) 

In high fields, 1h >> , Eq. (4) is reduced to the SG equa-
tion 
 sin 0TT XX hϕ −ϕ + ϕ = . (10) 

This equation was first derived by Mikeska [17] to describe 
2π-solitons, i.e. the 360° domain walls, as nonlinear excita-
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tions in the quasi-one-dimensional easy-plane ferromagnet 
3CsNiF . In the high-field limit in formulas (8) the parame-

ter W hκ ≈  is large, and the parameter 1/WR h≈  is small. 
Then the wobbler solution (7) is transformed in the follow-
ing configuration: 

 ( ) ( ) 2
sinh ( )14arctan exp
cosh ( )

W
h W

W

X
X X

h X
κ

ϕ = κ −
κ

,  (11) 

and in the main approximation the solution is reduced to 
the 2π-kink. After introducing the new time and coordinate 
variables t hT=  and x hX= , respectively, Eq. (10) takes 
the standard form of the SG equation 

 sin 0tt xxϕ −ϕ + ϕ = ,  (12) 

in which the well-known 2π-kink solution corresponds to 
the static 360°-domain wall 

 ( ) ( )2 4arctan expx xπϕ = . (13) 

Note that the energy of the system in the dimensionless 
variables can be written as follows: 

 ( )2 21 1 cos
2 t xE dx

∞

−∞

 = ϕ + ϕ + − ϕ 
 ∫ . (14) 

Now we are able to formulate the following nonstatio-
nary kink evolution problem: if we start from the wobbler 
spin configuration (7), prepared in the weak magnetic field h0, 
and apply instantly the strong magnetic field h to the ferro-
magnet, then how will this initial profile evolve and relax? 
The corresponding initial conditions for the problem in the 
framework of the SG equation (12) with the time and space 
variables, t and x, looks like 

( ) ( ) ( ),0 2arctan exp 2arctan exp ,
( ,0) 0,t

x x R x R
x

ϕ = κ − + κ +

ϕ =
 (15) 

where ( )01 /h hκ = +  and 0( )WR R h=  as follows from 
Eq. (8). Both parameters κ  and R  can be considered as in-
dependent, because they are defined by two, initial and fi-
nal, values of the magnetic field. 

In theory, the homogeneous field applied to a whole fer-
romagnet has to form the identical wobblers in its chains. 
There is another possibility to prepare the initial structure (15) 
for the chosen 360° domain wall. It is enough to apply the 
local magnetic field, which is opposite to the homogeneous 
field h, to the spins arranged in and outside the central 
region the 2π-kink (13), in order to vary in such a manner 
the distance between two π-kinks in the initial configuration. 

In the final stage of the evolution, the spin configura-
tion (15) will relax to the 2π-kink (13), but there is the 
question of how the difference between energies of two 
topological structures (13) and (15) will be distributed. 
This problem is solved in the next section. 

Oscillating domain walls and breather birth 
in the sine-Gordon systems 

The evolution problem of the initially static wobbler-
like structure (15) in the framework of the SG Eq. (12) can 
be considered following the scheme presented in Ref. 2. 
We study this question by solving the direct scattering prob-
lem associated with the SG equation (12), which can be 
formulated as the following matrix eigenvalue problem [2, 3]: 
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Here 1

2

ψ 
=  ψ 

J  is the Jost functions, and the matrix con-

tains initial spin configuration (15), 2z = λ  is the doubled 
spectral parameter, which can be represented for breathers 
as ( )expz i= χ , and the parameters S±  are expressed as 
follows: 

 1 cos
2

S+ = χ,   sin
2
iS− = χ.  (17) 

The frequency of the breather is equal to | cos |ω = χ  and 
the parameter ε, which is given as | sin |ε = χ , defines the 
amplitude and the reverse width of the breather and, even-
tually, its energy br 16E = ε  [1]. In Ref. 2, it is shown that 
the spectral problem (16) can be reduced to the eigenvalue 
problem of one-dimensional Schrödinger operator 

 ( )
2
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,  (18) 

where the eigenfunction f is connected with 1ψ  as follows: 

 ( )1Re / sin
2

f S+
ϕ

= ψ ,  (19) 

and the potential well is expressed explicitly through ϕ  and 
depends on the parameter ε: 
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Returning to the physical problem on the evolution and 
relaxation of the nonequilibrium spin structure (15), at first 
we consider the case of strong magnetic fields. If the initial 
field is strong enough, in 1h >> , then we can retain only 
the main part of the solution (11) and take it in the form 
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 (21) 

The parameter κ  is defined by the ratio of the initial field 
to the present one as in /h hκ = . The corresponding eigen-
value problem was solved in Ref. 2. The Schrödinger-like 
equation takes the following form: 
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2
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If we start from the field inh h< , then the parameter κ  
becomes less than the unity, and in the case 1/ 2κ ≤  the 
discrete spectrum of eigenvalues arises [18], and hence, the 
breather birth occurs. The breather parameter nε  is given 
by the formula 
 1 2n nε = − κ ,  (23) 

where integer n numbers breathers. As seen from Eq. (23), 
the first breather appears when 1/ 2κ = , i.e., in4h h= . 
In Ref. 2 it is shown that when 1/ 3κ = , and hence, 

in9h h= , then the energy of the born breather reaches max-
imum and the radiation of continuous spectrum waves dis-
appears. The corresponding initial profile is transformed in 
the wobbling kink, which oscillates with the frequency of 
breather 2 2 / 3ω =  and describes the precessing domain 
wall in the ferromagnet. The energy of the radiation, repre-
sented in [2], looks like the weakly decaying spike-like 
structure with strictly periodic positions of maxima at the 
breather birth points and minima corresponding to the ra-
diation energy zeroes. 

In the present study, we concentrate on the evolution of 
the topological structure which has the form (15) suppos-
ing that 1κ =  and R  is a free parameter. As pointed out 
earlier, we can apply the local magnetic field to the central 
region of the domain structure to expand it keeping in 
mind that the effective width of π-kinks remains unchang-
ing. Thus, we aim to distinguish the effect of the structure 
width on the process of the breather emergence. 

At first notice that the expression (15) with 1κ =  can be 
rewritten as 

 ( ) sinh,0 2arctan
cosh

xx
R

 ϕ = π+  
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. (24) 

After substituting this initial condition to Eq. (20), we ob-
tain the explicit form of the potential for the Schrödinger 
operator (18) 
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In order to reveal the values of the parameter R , when 
breathers appear, we notice that the parameter 0ε =  at these 
points. Then the potential (25) is simplified and takes the 
form 
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  (26) 

The corresponding Schrödinger equation with the potential 
well (26) is solved numerically, and we find the following 
sequence of values of the parameter R  when a new breather 
appears: 1 2.424,R =  2 5.59,R =  3 8.732R =  and so on. 
Then we solve the corresponding Schrödinger Eq. (18) 
with the full potential (25), preliminarily transforming it 
into the form 

 ( )
2

2
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4

d V x f f
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 
− + ε = − ε + ε 
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, (27) 

where the potential ( ),V x ε  tends to the constant value 
0 1/ 4V =  at infinity for all ε: 
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  (28) 

For this rewritten form of the potential well, all new levels 
are detached below from zero. In Fig. 1, we show the po-
tential well with discrete levels for two values of the pa-
rameter R . As seen from Fig. 1(a), there are two levels and 
two breathers respectively in the case 5.75R =  and three 
levels and three breathers in the case 8.75R = , at that the 
third level and, hence, the third breather, as pointed out 
above, just appeared at 3R R= . 

In the issue we have calculated all the discrete eigen-
values nε  of the Schrödinger equation (27) as functions of R 
in the wide range of the parameter. We present these re-
sults in Fig. 2 as dependencies of breather energies 

br ( ) 16 ( )nE R R= ε . 
Further, we calculate the energy (14) of the initial topo-

logical structure (24) and find the expression: 

 in
3( ) 2 2 tanh

tanh
E R R R

R
 = + − 
 

. (29) 

When 0R = , the structure (24) is transformed in the 2π-
kink, and then its energy is equal to 0 8E = . In the case of 
large R , the energy behaves as the linear function of this 
parameter. 
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Choosing the fixed value *R  in Fig. 2 and summing all 
br *( )E R from different branches, we find the total energy of 

breathers tot *( )E R . The difference between in *( )E R  and 
the sum tot *8 ( )E R+  of energies of nonlinear excitations, 
2π-kink and breathers, gives *( )rE R , the certain value of 

the radiation energy of the continuous spectrum waves. As 
a result, we calculate the full radiation energy dependence 
on the parameter R and present it in Fig. 3. 

Now we are able to imagine the evolution process of 
the nonequilibrium 360° domain wall structure. Being ini-
tially static, the spin structure begins to precess in the cen-
tral part of the domain and to generate the continuous spec-
trum waves. At the same time, if the condition of breather 
birth fulfills, then the precession in the domain does not 
decay, and a part of the stored energy is localized on the 
domain. As seen from Fig. 3, the energy, carried out by the 
continuous spectrum waves, has maxima at points where a 
new breather is emerged by oscillating domain wall struc-
ture. On the other hand, there are values of the parameter R 
when the radiation is minimal, and the energy is mainly con-
fined by the domain structure. As it has found by authors in 
Ref. 2 and pointed out above, the spike-like form of the 
radiation energy dependence takes place for the initial spin 
structure (21). We note now that such behavior is the com-
mon feature of the evolution of the nonequilibrium domain 
structure and does not reduce only to some kind of the size 
effect. The birth of breathers plays here the crucial role. 

Thus, the dilation of the domain structure creates the 
nonequilibrium configuration that can evolve with emerg-
ing breathers. On the contrary, the compressed structure 
expands, dumping the exceed energy through radiation of 
the continuous spectrum waves. The simpler example of 
the evolution of the nonequilibrium structure (21) confirms 
this conclusion because for values of the parameter 1/ 2κ >  
no breather can appear from this initial configuration. 

In Ref. 2, the double kink ansatz was discussed, which 
described the compressed structure of a different type than 
the solution (21). It has the following form: 

 ( ) ( ) ( )( )2 arctan exp arctan expx x i x iϕ = + δ + − δ   (30) 

Fig. 2. The energies of breathers as functions of the parameter R  
of the initial spin structure. 

 

Fig. 3. The radiation energy dependence on the parameter R . 

 

 

Fig. 1. Potential wells with discrete levels for the Schrödinger 
equation (27): there exist two levels in the case 5.75R =  (a) and 
three levels in the case 8.75R =  (b). 
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and, being the real function, it can be written as 

 sinh( ) 2arctan
cos

xx  ϕ = π+  δ 
. (31) 

We used this function as the initial condition in the SG 
equation and checked the eigenvalue problem (18) with the 
corresponding potential well 

 ( )
21 2sin1

4 cosh 2 cos 2
W x

xδ
 δ

= − +
+ δ

  

 
( )

2
2

2
3sin 2 2 2 cosh

cosh 2 cos 2cosh 2 cosh 2
x

xx

δ ε + + + ε
+ δ+ δ 

, (32) 

and no breather solutions and appropriate solutions of the 
spectral problem were revealed. 

Ending this section, we conclude that, extended domain 
wall structure, preliminarily enlarged by the homogeneous 
or local auxiliary field, can evolve and relax with emerging 
the breathers and arising the multi-breather wobbling kink, 
or, in terms of magnetism, with the formation of the multi-
frequency precessing domain wall in a quasi-one-dimensional 
ferromagnet. In the next section, we present numerical re-
sults of simulation of nonlinear dynamics of the sine-Gordon 
equation, which confirm analytical findings set out above. 

Numerical simulation of the evolution of extended 
domain wall structures 

The solving of the direct scattering problem associated 
with the SG equation predicts the results of the numerical 
simulation of nonlinear dynamics of this system. We use 
the typical difference scheme of the integration of the SG 
equation, starting from the initial conditions formulated in 
the previous sections. The obtained results are presented in 
the following figures. 

At first, we simulate the evolution of the initial domain 
structure with the parameter 1.75R = , which is less than 

the critical value 1R , when the first breather is born. The 
results for a half of the period of oscillations of the evolv-
ing structure, beginning from time 240t = , are shown in 
Fig. 4. The small radiation of almost linear waves by the 
oscillating domain wall is observed. These results are in 
full agreement with those predicted theoretically in Ref. 2. 

As seen in Fig. 2, the amplitude and the energy of the 
first breather rise sharply with the increase of the parame-
ter R  after the appearance at the point 1R . In Fig. 5, the os-
cillating 360° domain wall is shown, which has evolved 
from the initial structure with the parameter 4R = . It is re-
markable that in this case the pure wobbling kink is formed, 
and any notable radiation is not observed near the kink. 
This is the result of the previous emergence of the perfectly 
localized wave packets by the oscillating kink. The large 
wave packet and running ahead small one are shown in Fig. 6. 

We have studied nonlinear oscillations of the obtained 
precessing domain wall by spectral analysis of the time 

Fig. 5. The one-half period sequence of profiles of the oscillating 
360° domain wall evolved from the initial structure with the pa-
rameter 4R = . 

 

Fig. 6. The one-half period sequence of profiles of the localized 
wave packets radiated by the oscillating domain structure in the 
case of the parameter 4R = . 

 

Fig. 4. The one-half period sequence of the 360° domain wall 
profiles with small radiated linear waves for the case of the initial 
structure with the parameter 1.75R = . 
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series of the kink slope motion. The frequency spectrum 
is shown in Fig. 7. The sequence of the larger peaks corre-
sponds to the main and higher multiple harmonics of the 
breather, and the largest one coincides perfectly with the 
frequency obtained from the discrete spectrum of the Schrö-

dinger operator (18) in the case of the parameter 4R = . 
The multi-frequency wobbling kinks for large values of 

the parameter R  are presented in Figs. 8(a) and 9(a). They 
are well-separated from the large wave packets, radiated at 
an earlier stage of the evolution of the initial domain struc-
ture. These wave packets are shown in Figs. 8(b) and 9(b). 
Note the tendency of structuring the radiation with the for-
mation of the sequence of the fast-traveling well-localized 
smaller wave packets from the largest one. 

Thus, all obtained numerical results are in full agree-
ment with the predictions of the above proposed theory. 

Conclusion 

Nonstationary dynamics of nonequilibrium domain wall 
structures in the quasi-one-dimensional ferromagnet was 
investigated in the framework of the sine-Gordon equation. 
Oscillations of the topological spin structures were describe-
ed in terms of nonlinear excitations of the sine-Gordon equa-
tion, kinks and breathers. Theoretical analysis was per-
formed by using the authors’ reformulation of the direct 
scattering method approach as the spectral problem of the 
one-dimensional Schrödinger operator with the potential 

Fig. 7. The frequency spectrum of nonlinear oscillations of the 
domain wall in the case of the parameter 4R = . 

 

Fig. 8. The one-half period sequence of profiles of the oscillating 
360° domain wall evolved from the initial structure with the pa-
rameter 6.625R =  (a). The one-half period sequence of profiles 
of the wave packets radiated by the domain wall (b). 

Fig. 9. The one-half period sequence of profiles of the oscillating 
360° domain wall evolved from the initial structure with the pa-
rameter 8.75R =  (a). The one-half period sequence of profiles of 
the wave packets radiated by the domain wall (b). 
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well defined the initial spin configuration. By exact solving 
the eigenvalue problem for the operator, the conditions of 
the emergence of breathers by the nonequilibrium topolog-
ical spin structure were found, and dynamical parameters 
and the energy of the precessing domain wall in the 
ferromagnet were determined. For initial configurations of 
the dilated double kink structures, corresponding the 
stretched 360° domain wall, the energies of the born brea-
thers were calculated, and the energy of radiation, which 
was generated during the evolution of the nonequilibrium 
structure, was found. The dependence of the radiation on 
the parameter of the width of the initial structure was ob-
tained. It had the almost periodic form with spike-like 
peaks corresponding to the points of a new breather birth 
and minima for those values of the dimension of the initial 
structure when the stored energy mainly remained in the 
nonlinearly oscillating central domain. Numerical simula-
tion of the nonlinear dynamics of the sine-Gordon equation 
with the corresponding initial conditions entire confirmed 
the theoretical predictions and additionally gave a possibil-
ity to investigate the peculiarities of well-localized wave 
packet formation in the process of the radiation of continu-
ous spectrum waves. 

At last, we note that the obtained results can be applied 
to other physical systems, which are described by the sine-
Gordon model. First of all, it concerns the long Josephson 
junctions and their fluxon dynamics. 
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Нелінійні коливання топологічних структур 
в системах синус-Гордон 

M. M. Bogdan, O. V. Charkina 

Досліджено нелінійний ефект локалізації енергії на топо-
логічних неоднорідностях в системах синус-Гордон. Режими 
нелінійних коливань нерівноважних конфігурацій доменних 
стінок у квазіодновимірному феромагнетику описуються в 
термінах кінкових та бризерних розв’язків рівняння синус-
Гордона. Знайдено умови локалізації енергії, тобто форму-
вання бризерних збуджень на цих топологічних неоднорід-
ностях, для початкових конфігурацій розтягнутих подвійних 
кінкових структур. Результати отримано за допомогою рів-
няння типу Шредінгера в рамках метода оберненої задачі 
розсіювання, пов’язаної з рівнянням синус-Гордона. Показа-
но, що кінцевим станом еволюції нерівноважної топологічної 
спінової структури є багаточастотно осцилююча доменна 
стінка, що прецесує у феромагнетику, і випромінює хвилі без-
перервного спектра. 

Ключові слова: нелінійна динаміка, рівняння синус-Гордона, 
феромагнетик, доменна стінка, що прецесує, 
воблінг кінк, випромінювання.
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