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The dynamics of a quaternary fragment of a discrete system of coupled nonlinear oscillators with
modulated frequency parameters is investigated, and the stability of its gap and out-gap soliton-
like excitations is studied. © 2007 American Institute of Physics. �DOI: 10.1063/1.2737564�

I. INTRODUCTION

The concept of the gap �Bragg� soliton first appeared in
nonlinear optics.1,2 These solitons can exist in nonlinear sys-
tems with spatial periodicity of some material parameters
and possess the frequencies in the gap of the spectrum of
linear excitations. The interest in this problem is due to the
fact that the group velocity of linear waves, linear pulses,
and solitons tends to zero at the boundary of the gap. The
velocity of the optical pulse is reduced significantly in mate-
rial domains with modulated parameters which are inserted
into the optical fiber, and this effect could be used in nonlin-
ear optical devices.

Solitons with frequencies outside of the gap, the out-gap
solitons, were first studied in Ref. 3. Embedded solitons of
this type have frequencies inside the band of linear excita-
tions and nonzero asymptotics at infinity. Therefore, in con-
trast to the gap soliton, the out-gap soliton has infinite norm.
The gap and out-gap solitons in discrete systems with alter-
nating atomic or spin characteristics, e.g., in diatomic lattices
and two-sublattice magnets, have been investigated by many
authors. Many of the results obtained were similar to those
for extended systems, while some finite-size models were
solved exactly in special cases. However two important
questions remain still open: �i� how does the gap soliton
transform into the out-gap one at the boundary of the fre-
quency gap of linear waves �“linear gap”�, and �ii� what are
the stability properties of the gap and out-gap solitons?

It is well known4 that many aspects of soliton dynamics
of nonlinear systems can be elucidated in the framework of
models with a finite number of degrees of freedom. The sim-
plest discrete modulated system that admits the existence of
analogs of the gap and out-gap excitations is a ring of four
coupled nonlinear oscillators with alternating frequency
parameters.5 At present this model is of great interest for
low-temperature physics due to the topical problem of mag-
netic molecular nanoclusters.6 It is known that in systems of
finite size or with a finite number of degrees of freedom,

quasi-solitons appear in a bifurcation manner beginning from
the moment when the energy or system parameters, in par-
ticular, the frequency modulation depth �,5 exceed some
threshold values. The scenario of the birth of the analog of
the gap soliton in the quaternary model contains two bifur-
cations: at �c=1.707, where some new excitations appear in
the “nonlinear gap” �see below�, and at �*=1.750, where
analogs of the gap and out-gap modes appear. This bifurca-
tion pattern is qualitatively depicted in the inset of Fig. 3 in
Ref. 5. These two bifurcations were first discovered numeri-
cally by L. Kroon,7 who informed the authors of Ref. 5 about
his results before the publication.5 The exact bifurcation pic-
ture represented by the numerical results of Ref. 7 is shown
in Fig. 1. The main goal of this paper is to reveal details of
the scenario of transformation of the gap soliton analog into
an out-gap soliton one and to analyze the stability of these
nonlinear excitations.

II. THE MODEL

Nonlinear dynamics of a ring consisting of four coupled
anharmonic oscillators �or classical spins with numbers n

FIG. 1. Stationary solutions in the �� ,N� plane for �=1.75. Solid �dotted�
lines represent stable �unstable� regions of the solutions.
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=1,2 ,3 ,4� with a periodic modulation of the frequency pa-
rameter is considered in the framework of discrete nonlinear
Schrödinger equation �DNLSE�:5

i�̇n − �0
�n��n + ���n+1 + �n−1� + ��n�2�n = 0. �1�

The corresponding Hamiltonian of the model has the form

H = �
n

��0
�n���n�2 − ���n�n−1

* + �n
*�n−1� − ��n�4/2� , �2�

with canonically conjugate variables �i�n�, ��n
*�, and �0

�n�

	�a��0
�n�	�b�, when the index n is an odd �even� number.

In addition to the Hamiltonian �2� also the norm �excitations
number�, defined by N=�n��n�2, is a conserved quantity for
�1�. The ratio �	�b /�a �we suppose for definiteness ��1�
reflects the depth of modulation. The transformation �n

→
��n, �0
�n�→��0

�n� is invoked in normalizing the coupling
� to unity. We will discuss the stationary states of the form
�n

����t�=�n�exp�−i�t� with real amplitudes �n. In the linear
limit ��n→0� the spectrum of normal modes contains only 4
frequencies for in-phase and antiphase oscillations with
�min,max= ���a+�b��
��b−�a�2+16� /2, and for the gap
boundaries solutions with �=�a and with �=�b. In the limit
of a long chain these frequencies do not change, but the
domains ��min,�a� and ��b ,�max� transform into two bands
of the spectrum with the gap ��a ,�b�. That is why in our
simple model we will call this domain a linear gap. In the
nonlinear case the frequencies of the aforementioned four
“main nonlinear modes” decrease, and the “linear gap” trans-
forms into a “nonlinear gap” with �a,b�N�=�a,b−Na,b /2 �see
the lines �a� and �b� in Figs. 1 and 2�. The frequencies �a

and �b at the boundaries of the gap correspond to the an-
tiphase oscillations �↑0↓0� and �0⇑0⇓�, respectively, where
the zeros indicate immovable particles and the thickness of
the arrows characterizes the relative amplitude of the oscil-
lations. The frequencies for nonlinear oscillations depend not
only on the parameter �, but also on the amplitude and,
hence, implicitly on the norm N and the energy E defined
from the Hamiltonian �2�. The “spectral” dependence E
=E�N� of the system is uniquely determined by the charac-
teristic �=��N� due to the fulfillment of the relation �
=dE /dN for monochromatic oscillations. The most interest-
ing for us are the upper boundary of the nonlinear gap �line
b in Fig. 1� and the analog of the gap and out-gap modes
�line e in Fig. 2�, bifurcating from the boundary.

III. THE STABILITY PROBLEM

The stability of the solution �n
����t� is analyzed by adding

the perturbation �n�t�=	n exp�−i
t�+�n
* exp�i
*t� to its

time-independent amplitude �n. Linearization of Eq. �1�
around the stationary solution yields the eigenvalue problem

�� − �0
�n� + 2�n

2�	n + 	n+1 + 	n−1 + �n
2�n = − 
�n,

�� − �0
�n� + 2�n

2��n + �n+1 + �n−1 + �n
2	n = 
�n. �3�

The linear stability of the stationary solution is equivalent to
all eigenfrequencies 
 being real.

�i� Stability of the b mode. This problem can be solved
analytically. Introducing the notation A=�a−�, B=�b−�,
�0= ��a+�b� /2 and the width �	B−A= ��−1��0 of the

linear gap, the solution for the upper boundary of the “non-
linear” gap �b mode� can be written5 as ��n

�b��= �0,
B ,0 ,
−
B� and the eigenvalues 
 are found to satisfy the equation


2�
2 − A2��
4 − �A2 + 8�
2 + 8AB + 16� = 0. �4�

The root 
=0 corresponds to “phase mode” and the
roots 
= ±A are real, whereas the remaining eigenvalues


 = ± 
�A2 + 8�/2 ± 
�A2 + 8�2/4 − 8�AB + 2� �5�

are complex whenever A�A3−16A−32��
0. In the notation
�±=
3 16�±
�16��2− �16/3�3, this criterion leads to oscilla-
tory instability2 in the region 0
A
�++�−, which appears
through Krein collisions8 and manifests itself through reso-
nances of the internal modes. One may note from Fig. 1 that
there exist two windows of instability for the b mode. The
first one is bounded by the bifurcation point 1 of the gap e
mode and the bifurcation point 2 in Fig. 1. For large � this is
the bifurcation point for the unstable d mode �Fig. 2�. A
second interval developing for �
4/ �3
3�, is ruled out by
the constraint B=A+��0 and is bounded by the point 3 for
the bifurcation of the c mode ��n

�c��= �
A ,
B ,−
A ,−
B�
�Ref. 5� at the frequency �=�a �the low boundary of the
linear gap�. If AB+2
0 is satisfied, two of the eigenvalues
�5� are not real. Applying the dependence �b�N�=��a

−N /2 of frequency on norm N, inequality gives an interval
��b�N�−�0�

�� /2�2−2, for which the solutions ��n

�b�� are
unstable, if and only if ��2
2	�c. For large � �see Fig. 2�
the c mode is stable only in the vicinity of point 3. The lower
boundary of the nonlinear gap corresponds to the a mode,
which is linearly stable for all values of parameter �.

�ii� The stability of the gap and out-gap modes. First of
all we notice that our investigations of the gap solitons in the
systems with 4, 6, 8, 10, 12, 16 particles have shown that the
dependence of the gap and out-gap solution frequencies on
the norm changes qualitatively in the same manner when the
number of particles grows or the parameter � grows. The
following result is the most important: the dependence �
=��N� does not embed into the lower zone of the linear-
wave spectrum and remains inside the nonlinear gap of the
spectrum, but it transforms essentially at the frequency of the
lower boundary of the linear gap ��=4 in Fig. 2�. At this
frequency value the transformation of the gap soliton into the

FIG. 2. Stationary solutions in the �� ,N� plane for �=2.5, which is the
threshold for the linear stability of the gap and out-gap solitons.
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out-gap one takes place. There are not analytical expressions
for the gap and out-gap solitons, except the case �=2.5.9 We
studied the stability of these excitations numerically in the
framework of Eqs. �3� with the use of numerical solutions for
�n. The results are shown in Fig. 3. There exists the window
of the Krein �oscillatory� instability of the gap and out-gap
solitons analogs with nonzero imaginary part of parameter

. But Im 
 tends to zero for �→2.5 �large depth of modu-
lation�. This justifies the expectation that the gap and out-gap
solitons are stable in the large modulated systems. In the
inset of Fig. 3 the transformation of the window of instability
is presented: it lies inside the linear gap, and the frequencies
of the window and its width decrease with the growth of
parameter �.

IV. CONCLUSION

The analogs of gap and out-gap solitons have been stud-
ied in the quaternary fragment of discrete modulated nonlin-

ear system of coupled oscillators. It has been demonstrated
that transformation of such monochromatic soliton-like solu-
tions and their stability depend essentially on the value of the
modulating parameter �. After two bifurcations at �=1.707
and �=1.750 a unified dependence of the soliton frequency
� on the norm N for gap and out-gap solitons is formed. The
gap soliton transforms into an out-gap one at the lower
boundary of the “linear gap” of the spectrum, while the de-
pendence �=��N� for these excitations is situated above the
lower boundary of “nonlinear gap.” In the region 1.75
�

2.5 there exists the window of the oscillatory instability of
the soliton solution, but for ��2.5 the gap and out-gap soli-
tons are stable for all the frequencies.
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FIG. 3. The development of the Krein instability for the gap and out-gap
breathers versus �: 2.47 �1�, 2.48 �2�, 2.49 �3�, �2.5 �4�. For ��2.35 the
oscillatory instability enters the gap regions ��
4�, and the resonance ul-
timately vanishes at �=2.5 ��=5�. Close to the threshold of the stability the
maximum value of the imaginary part of 
 shows a linear scaling in � �and
��.
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