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The interaction of a magnetic vortex with the frustration created by a magnetic defect is
investigated in a discrete Heisenberg model of a two-dimensional antiferromagnet with easy-
plane anisotropic exchange. Numerical solutions are obtained for the static Landau-

Lifshitz equations describing the spin distribution in a system with magnetic frustration and a
vortex. It is found that the energy of the magnet is minimum in the case when the center

of the vortex coincides with the position of the magnetic impurity. It is shown that as a result of
the attraction between the vortex and frustration, a two-dimensional solitonic bound state
localized at the magnetic defect—a frustrated vortex—arises in the magnet. The energy of such a
vortex is lower than that of the free vortex, and this effect can be manifested in features of

the behavior of the EPR linewidth in two-dimensional magnets. © 2005 American Institute of

Physics. [DOI: 10.1063/1.2008133]

I. INTRODUCTION

The class of quasi-two-dimensional antiferromagnets
comprising metalorganic compounds can evidently be
supplemented by high-7',. superconductors in the magneti-
cally ordered phase.! The CuO, planes in high-T'. supercon-
ducting compounds such as YBa,Cu3;Oq,, and
La,_,Sr,CuO,_, are two-dimensional Heisenberg layers of
antiferromagnetically coupled copper spins with a value
close to 1/2.2 The superexchange J between Cu>" ions takes
place through the oxygen ions O?~. These almost isotropic
two-dimensional layers are coupled by a weak exchange J |
<J of the same order as the easy-plane magnetic
anisotropy.” It is known* that the electronic state of the CuO,
planes and, hence, the character of the magnetic exchange
between Cu®" ions depend substantially on the oxygen con-
tent in high-T,. superconductors. In particular, it has been
established for lanthanum and yttrium superconductors that
variation of the oxygen concentration leads to the formation
of “holes” in the CuO, plane. These ‘“holes” are charge
carriers in the superconducting phase,’ and in the opinion of
Aharony and co-authors,” their localization at the oxygen in
the magnetic phase leads to a change in character of the
superexchange between the Cu’>” ions, from antiferromag-
netic with J~1000 K to ferromagnetic with /'~ —3000 K.?
The resulting frustration® destroys the long-range magnetic
order.

The quantum description of these phenomena is a very
laborious task,” and for that reason the analytical approach
usually turns to the framework of classical Heisenberg
models.® In the Heisenberg XYZ model the magnetic inter-
actions in the copper planes in YBa,Cu3Og., , are described
by a Hamiltonian of the form

Hy= JZ [SES*, + 7S’S)

r r+a r r+a

FASESE, T, (1)

r¥r+a

on a square lattice, where S, is the classical spin, the sum-
mation is over lattice sites and nearest neighbors, the con-

1063-777X/2005/31(8-9)/5/$26.00

stant A<<1 corresponds to easy-plane anisotropy, and the
constant # is introduced to take into account a weak anisot-
ropy in the plane: 1 — <<1—A\<1. It will be understood that
the results obtained below are applicable primarily to yttrium
compounds, for which A =0.99, whereas for lanthanum com-
pounds it is important to take the Dzyaloshinski—Moriya in-
teraction into account as well. For yttrium compounds, since
the spins of two nearest-neighbor copper planes interact an-
tiferromagnetically with an exchange J, , we shall assume
when studying the static configurations that the nearest spins
in different planes are pairwise antiparallel.

The static spin distributions are solutions of the follow-
ing Landau-Lifshitz equations:

S oH

XF.=0, F.=-— 5_Sr (2)
where F| is the effective field at site r, and H is the Hamil-
tonian of the magnetic system. In the presence of a bond
defect (the exchange constant between two spins has a dif-
ferent sign from the interaction in the host matrix), as a result
of frustration, the ground state can be nonuniform (in the XY
model this is a threshold effect in the parameter J'/J).” Such
a state, with a nonuniform distribution of the antiferromag-
netic vector field localized near the defect is called a Villain
ground state.® On the other hand, such a localized spin struc-
ture can also be interpreted naturally as a two-dimensional
magnetic soliton localized at the defect. Therefore, the term
magnetic frustration has come to denote a solitonic spin dis-
tribution arising near an effective frustrated bond.> Such
frustrations can influence the magnetic characteristics of
high-T,. superconducting (HTSC) compounds, in particular,
the temperature of the Néel phase transition in
YBa,Cu;04, , (Ref. 9), and can contribute to the suscepti-
bility of the crystals. Direct experimental measurement of the
susceptibility of the CuO, planes is difficult because of the
large values of the exchange constants J and J'. However, it
has become possible to estimate the susceptibility of the
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CuO, layers in an indirect way thanks to the discovery of a
new class of HTSC compounds containing rare-earth (R)
jons: GaBa,Cu;0q. ., Nd,_ Ce CuO,, etc.,'®!! in which
the rare-earth ions neighbor the CuO, planes. A soliton ap-
proach to the treatment of questions related to the structure
of magnetic frustrations in the CuO, layers of HTSC com-
pounds and their rare-earth analogs in the presence of mag-
netic field was proposed in Refs. 12 and 13; the contribution
of frustrations to the magnetic susceptibility of magnets was
investigated, and the magnetic fields induced by the field of a
frustration in the rare-earth ion layers were found. Since the
characteristic interactions in the rare-earth layers are substan-
tially smaller than the exchange J in the CuO, plane, the
magnetic properties of the planes containing the Ga, Nd, etc.
ions are studied by conventional techniques. Susceptibility
measurements in compounds of the class R,CuO, have
revealed'! weak ferromagnetism, one of the causes of which
may be that frustrations having a magnetic moment are
present in the CuO, planes. Since frustrations in the CuO,
planes influence the magnetic ordering in the adjacent rare-
earth layers,'> one expects that frustration contributions will
also be manifested in magnetic resonance experiments.

On the other hand, it is well known that magnetic vortex
solitons can exist in two-dimensional isotropic and easy-
plane magnets.'*!> In the case of weak anisotropy these vor-
tices have a structure with spin components that come out of
the plane.'® Such solitons can contribute to the EPR line
broadening in quasi-two-dimensional magnets.'”'® Their in-
teraction with magnetic and nonmagnetic defects of substi-
tution has become a topic of research only recently.'®~%*

In this paper we investigate the character of the interac-
tion of a magnetic frustration and a vortex in an easy-plane
antiferromagnet and predict the formation of their bound
state—a frustrated vortex. Such nonlinear excitations can
contribute to the resonance and thermodynamic characteris-
tics of quasi-two-dimensional magnets and HTSC com-
pounds in the magnetically ordered phase.

Il. TWO-DIMENSIONAL HEISENBERG MAGNET WITH A
FRUSTRATING IMPURITY

The use of a planar model for describing magnetic
frustration,z’&12 raises the question of the correctness of re-
placing the almost isotropic Heisenberg Hamiltonian custom-
arily used for HTSC compounds by the XY model. The im-
portant circumstance that calls the applicability of such an
approximation into question is this: two-dimensional
solitons—magnetic  vortices—can exist in easy-plane
magnets.'*!¢ If the anisotropy is not small, then the vortex
spin configuration is planar. In the almost isotropic case,
which corresponds to the CuO, plane, the vortex configura-
tion acquires spin components that come out of the plane.
This naturally raises the questions of how the magnetic frus-
trations will behave in an almost isotropic Heisenberg model,
and what will be the nature of the interaction of a frustration
and a magnetic vortex in such a system?

To answer these questions, we formulate the following
classical model describing the interaction of the spin of a
hole and the spins of the copper in the CuO, plane (see also
Ref. 7). The Hamiltonian (1) is supplemented with a term
appropriate to such an interaction:

M. M. Bogdan

H=Hg+Hg, Hp=JS; (S +8S;), (3)

where S, is a hole spin, and the exchange J between the hole
spin and a copper spin is assumed, for the sake of definite-
ness, to be antiferromagnetic, i.e., J>0. (We recall that all of
the spins have been replaced by classical unit vectors, and
their absolute value S=1/2 is subsumed in the renormaliza-
tion of the exchange constants.) This model explicitly takes
into account the interaction of the magnetic impurity with the
spins of the host and admits a transition in terms of this

parameter to the defectless case, J—0. We note that the
static Landau-Lifshits equation for the hole spin,

$1X (S, +5,,)=0 @

has the obvious solution in accordance with the fact that the
hole spin is antiparallel to the sum of the copper spin vectors:

Srl + Sr2

S =<
"8y S|

Q)
Therefore, in the proposed model the frustrated contribution
of the hole to the interaction between the statically distrib-
uted copper spins is equal to Hy=—1J]| Sy, +S,|. We note
that the effective interaction of the copper spins via the hole
spins turns out to be of a ferromagnetic character indepen-
dently of the initial sign of the interaction of the hole spin
and copper spin (see also Ref. 2). Here we note that, unlike
the models using the frustrated bond approximation,>® which
lead to results that are equivalent for ferro- and antiferromag-
nets to within a change of the signs of the exchange con-
stants, the present model pertains specifically to antiferro-
magnets, since it is due to the inevitable frustrating influence
of an interstitial magnetic impurity on the antiferromagnetic
ordering of the host spins.

The solution (5) of equation (4) suggests a numerical
algorithm that permits effective solution of the static equa-
tion (2) in the general case. An iterative method of solving
the static Landau—Lifshitz equations for arbitrary values of
the spins S and arbitrary interactions governing the equilib-
rium state of the system (in particular, spin distributions like
two-dimensional magnetic frustrations and vortices) is based
upon the following idea. It follows from Eq. (2) that the
vector S, should always be parallel to the effective field F,,
and the elementary iteration step can therefore be written as

SLH'=S.F./FL, ™

where F ’r is the length of the vector Fi, and the index i is the
number of the iteration. If the initial spin distribution if suf-
ficiently close in form to a magnetic frustration or vortex,
then the iterative calculation converges very rapidly and
leads to a stable solution of Egs. (2).

lll. INTERACTION OF A MAGNETIC FRUSTRATION AND A
VORTEX IN A TWO-DIMENSIONAL ANTIFERROMAGNET

In this paper we report a numerical investigation of the
equilibrium spin configurations in the framework of the dis-
crete Heisenberg model (3) on a 41X40 spin matrix (n,m)
(the lattice constant is taken equal to unity). First we ob-
tained solutions describing magnetic frustrations; they turned
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FIG. 1. A 13X 12 fragment of the spin distribution at a magnetic frustration.
The positions of the central spins are the sites (21,20) and (21,21), between
which is located the spin of a magnetic impurity.

out to be practically the same as in the planar model,>%!%13

i.e., localized in the easy plane at for arbitrarily weak anisot-
ropy (see Fig. 1). This circumstance permits a complete jus-
tification of the use of the planar model for calculating the
structure of the frustrations in the presence of magnetic
field.'*!> We note that in the purely isotropic case (7=X\
=1), all the spins of the frustration also lie in a single plane,
but there is degeneracy with respect to rotation of that plane
around an arbitrary axis. In the frustration model with inter-
action (3) a nonuniform ground state arises at arbitrarily
small values of the parameter W=J/J. For W=0 the energy
of the uniform antiferromagnetic ground state of a 41X40
matrix of spins in units of J has the value Ey=—3199. The
energy of the system with frustration, Ey,, initially falls off
quadratically as a function of the parameter W but then, after
W=3, its decline becomes practically linear (Fig. 2). Thus
the energy of the system with frustration is lowered by an
amount AE=Ey—E,, which is naturally called the self-
energy of a frustration. For example, for W=3 the energy
AE;=—2.08.

The proposed numerical method is efficient for calculat-
ing the structure of a vortex with components that come out
from the easy plane, since in that case the spin distributions
in the course of the iterations converge rapidly to the stable
solutions. As the initial distribution for the vortex in the cal-
culations we used approximate analytical expressions for
easy-plane vortices from Ref. 16. The numerical calculation
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FIG. 2. Energy of an antiferromagnet with frustration Ey,., measured in units
of J, as a function of the frustration interaction parameter W.
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FIG. 3. Energy of an antiferromagnet containing a vortex and a frustration,
measured in units of J, as a function of the distance between their centers.

for the energy of a free vortex (i.e., in the system without a
frustrating impurity, W=0) for a 41X40 spin matrix gives
AE,=E,—E;=9.51.

The next step consists in the calculation of the interac-
tion of a magnetic vortex and a frustration in the framework
of the proposed model. For this the problem is stated for the
following physical situation: a hole is introduced into a sys-
tem of spins with a vortex at the center and is moved to
different distances from the center of the vortex. It was as-
sumed in the calculations that the anisotropy constants
=1 and A=0.99, and the ratio of exchange constants W
=3. For the stable configuration obtained, the energy of the
system was found. Figure 3 shows the dependence of that
energy on the distance R between the hole spin and vortex
center. It is seen that the interaction is of an attractive char-
acter. It follows from an analysis of the spin distributions
obtained that at large distances between the hole spin and
vortex center the presence of frustration is practically unno-
ticeable (see Fig. 4), and outwardly the vortex differs little
from the free vortex.'® At the same time, the vortex turns out
to be strongly deformed in the energetically most favorable
state, when the vortex center lies on the axis between two
copper spins, coinciding precisely with the position of the
hole spin (Fig. 5). Such a bound state of the magnetic vortex
and an impurity spin is naturally called a frustrated vortex.
The strong frustrating influence of the magnetic impurity on
the deviation of the components of the vortex from the easy
plane is clearly seen in Fig. 6, which shows the modulus of
the St components of the host spins.

To find the energy AEy, of a frustrated vortex, one must
subtract from the total energy E,,=—3192.31 the energy

FIG. 4. Modulus of the projection S on the coordinates in an antiferromag-
net containing a vortex and a magnetic frustration in the case when the
impurity spin is located between sites (11,20) and (11,21).
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FIG. 5. A 13X 12 fragment of the distribution of the projections of spins in
a frustrated vortex. The arrows indicate the components of the vectors S, in
the XY plane. The impurity spin is located in the middle between sites
(21,20) and (21,21).

Ey=—3201.08 of a nonuniform ground state of the system
with an isolated frustration. The energy obtained, AEj,
=8.77, is less than the energy AE, of a free vortex by the
amount of the binding energy, AE,= —0.74, which amounts
to around 8% of the vortex energy. As is seen in Fig. 3, these
calculations are equivalent to finding the binding energy in a
frustrated vortex by subtracting from E , (the total energy at
R=0) the energy of the system with the magnetic frustration
removed to a large distance and the free vortex.

Returning to the initial physical statement of the prob-
lem, we emphasize that introducing a hole into a CuO, plane
containing a free vortex leads to the formation of their bound
state—a frustrated vortex, and lowers the energy of the sys-
tem as a whole by an amount AE= —2.82, which consists of
the energy of a frustration and the binding energy.

Thus, for given dimensions of the lattice (or density of
vortices and holes) and values of the exchange interactions, a
numerical estimate of the energy of a frustrated vortex shows
that the decrease of the system energy due to the introduction
of a hole into it and the localization of the vortex at the hole
is of the order of 30% of the energy of a free vortex.

Such a decrease might be detected in EPR experiments
in layered magnets—rare-earth analogs of HTSC com-
pounds. Upon localization of the magnetic impurity at a site
in a metalorganic antiferromagnet one observes temperature
broadening of the EPR line. One of the possible explanations

FIG. 6. Frustrated vortex with center of localization at a magnetic defect.
The dependence of the modulus of the projection Si on the coordinates is
shown.
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for this is that this broadening of the resonance line includes
a contribution from magnetic vortices.!” An estimate of the
energy of the vortices can be obtained from the temperature
dependence of the EPR linewidth.'® In HTSC compounds
EPR directly on the copper ions is not observed; this remains
one of the unexplained mysteries of the physics of high-
temperature superconductivity.”**> This may be because of
the very strong broadening of the resonance line in these
compounds, which may include a contribution from mag-
netic vortices. The resonance is observed in the rare-earth
analogs of HTSC compounds,'! and the contribution of frus-
trated vortices might be observed indirectly through the
fields induced in the planes of the rare-earth ions, as in the
simpler case of a replica of a magnetic frustration.'* It should
be noted, however, that for further generalization of the re-
sults to the lanthanum compounds La, ,Sr,CuQ,_, it is
necessary to take the Dzyaloshinski—Moriya interaction into
account in a consistent way, and also the possible motion of
the holes, which requires consideration of more-complex
spin Hamiltonians.?*?’

IV. CONCLUSIONS

We have formulated a discrete classical Heisenberg
model of a two-dimensional antiferromagnet with easy-plane
anisotropy of the exchange with an interstitial magnetic im-
purity. Such a model can describe the behavior of magnetic
copper layers of the HTSC compound YBa,Cu;0O¢,, with
holes in the CuO, planes. We have investigated the interac-
tion of a magnetic frustration and a magnetic vortex in the
framework of this model and obtained the following results.

1. We have proposed an efficient algorithm for numerical
solution of the static Landau—Lifshitz equations for calcula-
tion of the equilibrium stable spin configurations of magnetic
systems with an arbitrary character of the spin interactions.

2. The solutions of the Landau—Lifshitz equations corre-
sponding to magnetic frustration and a magnetic vortex with
spin components coming out of the easy plane have been
found numerically, and the energy characteristics of these
solutions have been calculated as functions of the model pa-
rameters.

3. We have shown that the energy of a magnet contain-
ing a vortex and frustration is minimum in the case when the
center of the vortex coincides with the position of the hole.
As a result of the attraction between the vortex and frustra-
tion a two-dimensional bound state localized at the magnetic
defect—a frustrated vortex—appears. The energy of such a
vortex is lower than that of the free vortex.

4. This effect can be detected in EPR experiments, since
an estimate of the energy of magnetic vortices can be ob-
tained from the temperature dependence of the resonance
linewidth, to which these nonlinear excitations give an expo-
nential contribution.

Thus in two-dimensional antiferromagnetic systems with
interstitial impurities (such as holes in HTSC compounds)
the magnetic frustrations and vortices can form bound states
having a substantial influence on the thermodynamics and
resonance properties of these systems.

The author thanks N. F. Kharchenko and J. M. Tran-
quada for helpful discussions and advice.
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