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Effects of a single-atom impurity on a small vortex-like soliton are studied in the two-dimensional
(2D) Heisenberg model of layered magnets. In the 41 � 41 spin lattice with exchange parameters
corresponding to the 2D easy-plane copper ferromagnet and the easy-axis manganese antiferro-
magnet a vortex-like structure and its energy are calculated in the presence of a single nonmag-
netic or magnetic impurity. It is found that the in-plane and out-of-plane vortices are attracted to
and centered on the impurity in the easy-plane magnet up to the almost isotropic limit. Layered
Cu-halide compounds are found to be good candidates for experimental observation of stable,
fixed vortex–antivortex patterns.

Introduction Layered compounds are well-known [1] to exhibit quasi-two-dimen-
sional (2D) magnetism at low temperatures. The 2D nature of these structures arises
because the ratio of interlayer exchange to intralayer exchange is of the order
J?=J � 10�3 � 10�5, and 2D effects can be experimentally observed in a narrow tem-
perature interval (referred to as the fluctuation region) just above the ordering tem-
perature. In this case, the 2D spin lattices can be described by the anisotropic Heisen-
berg model with the Hamiltonian [1]
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where l ¼ Jz=J characterizes the exchange anisotropy, D is a constant of the single-ion
anisotropy, Sr is a classical spin on the site with the radius-vector r ¼ ðn;mÞ on the square
lattice and the summation with respect to a is taken over nearest-neighbor sites. Low-di-
mensional crystals with copper ions (S ¼ 1=2) are 2D ferromagnets with only the ex-
change-type easy-plane anisotropy of the order E ¼ 1� l � 10�2 � 10�3 [11]. They are de-
scribed by Eq. (1) with J > 0 and D ¼ 0. As an example, it is remarked that K2CuF4 has
J=k ¼ 11:2 K and E ’ 1:2� 10�2. There is also a class of metal- organic compounds with the
general formula (CnH2nþ1NH3)2MCl4, where M = Cu are also 2D ferromagnets with the
exchange JCu ’ 18 K and E ’ 3� 10�3. Also of interest is the case M ¼ Mn (S ¼ 5=2)
which corresponds to almost ideal 2D antiferromagnets with JMn ¼ �5 K and anisotropy is
of the easy-axis single-ion type rather than anisotropy of exchange origin. These com-
pounds are described by Eq. (1) with l ¼ 1 and a � D=J ’ 1:1� 10�3.
The electron paramagnetic resonance (EPR) in these compounds reveals Arrhenius

behavior, exp ðE=TÞ, in the temperature-dependent linewidth in the fluctuation region
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immediately above the ordering [2]. One of possible explanations of this effect is based
on the assumption that excitation of magnetic solitons, or vortices, with energy E [2–4]
exist in 2D magnets. Thus, the energy of the vortex can be obtained directly from the
experimental linewidth data.
To verify the assumption of the vortex contribution to the EPR linewidth it is useful

to study the influence of nonmagnetic and magnetic impurities on the structure and
energy of vortices. In [5] it has been shown that a nonmagnetic impurity in the finite-
size easy-plane ferromagnet increases drastically the stability of the in-plane (P) vortex.
The critical value of the parameter l, when the P vortex loses stability and the out-of-
plane (OP) vortex arises, appears to be close to unity, lc ¼ 0:957.
In the present work we investigate numerically the structure of the P and OP vor-

tices in the easy-plane copper ferromagnets with either a nonmagnetic defect (e.g. Zn,
Cd) or a “heavy” magnetic impurity (Mn) as well as the effect of a nonmagnetic and
“light” magnetic impurity (Cu) on the stability property of the Skyrmion in the easy-
axis manganese antiferromagnet. We use the term “Skyrmion” for a vortex of the Bela-
vin-Polyakov type [6] with the energy close to 4pJS2, which is independent of the exci-
tation size. This is only valid for the classical isotropic magnet, but the structure and
energy remains similar for weak easy-axis anisotropy [3]. Note that a vortex in the 2D
magnet with the easy-plane anisotropy has the energy which depends on the system
size, RS. In particular, the energy of the P vortex is equal to Ea

P ¼ pJS2 ln ðRS=r0Þ,
where r0 is about the lattice constant [7].

Equations for Spins with Impurity To take into account the effect of a nonmagnetic
impurity one has to remove a spin and corresponding exchange interactions with its
nearest neighbors from the spin Hamiltonian (1). Our additional assumption about the
influence of the nonmagnetic impurity includes also an increase of the easy-plane aniso-
tropy (a decrease of the parameter l) for the exchange interaction of every spin adja-
cent the empty site with their three neighbors.
In the case of the magnetic impurity a special question remains about the value of

the exchange interaction between spins of Cu2þ and Mn2þ ions. We know only the
estimate for the exchange in CuMn spin-glass alloys [8]. It is ferromagnetic with the
value of thousands of Kelvins. However, in numerical calculations, because of a differ-
ent physical situation for the above-mentioned layered magnets, we use the value of the
exchange jJCu�Mnj from jJMnj to 5jJMnj which is slightly more than JCu, and both ferro-
magnetic and antiferromagnetic types of interaction are considered.
Thus, we consider the spin square matrix of the 41 � 41 size with the impurity site

(21, 21). One needs to solve the static Landau-Lifshitz equations

Sr � Fr ¼ 0 ; Fr ¼ �dH

dSr
; ð2Þ

where Fr is the effective field for Sr on the site with coordinate (n;m). Computing code
solving the equation is realized as the interation procedure whose details will be pub-
lished elsewhere [9]. The main idea of finding solutions of static Eqs. (2) is that as it
follows from Eq. (2) Sr is parallel to the effective field Fr, and hence the interation step
can be written as

Siþ1
r ¼ S � Fi

r=Fi
r ð3Þ
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where Fi
r is the length of the vector Fi

r. If one starts with the initial vortex-like spin
distribution corresponding to approximate vortex solutions for the easy-plane magnet
[7] or to the Skyrmion for the easy-axis anisotropic system [3] then the iteration proce-
dure converges very fast to the vortex–impurity complex solution if the latter is stable.
The energy of the vortex–impurity complex is calculated as the difference between the
total energy of a system with vortex–impurity structure, Etot, and the ground state en-
ergy of the system with an impurity, E0.

Results and Discussion In this section we present results of solving Eqs. (2), which are
summarized as the following.
For the case of a nonmagnetic impurity in the easy-plane ferromagnet we confirm the

analytical result of the work [5] that lc determining the boundary of the stability of the
P vortex is close to the isotropic case. For the 41 � 41 spin matrix the value appears to
be equal to lc ¼ 0:953 which is determined from the magnetization curve. The ground
state energy of the system with a nonmagnetic impurity in the unit of JS2 equals to
E0 ¼ �3276. Then the energy of the P vortex centered on the site without a spin is
EP ¼ 10:61. It is close to the analytical estimate Ea

P ¼ 11:67 for the perfect spin lattice
with RS ¼ 41 and r0 ¼ 1.
For l > lc the OP vortex arises with nonzero out-of-plane z-component. This solu-

tion is also stable up to values l� ¼ 0:993. In Fig. 1 the typical structure of the OP
solution is presented for l ¼ 0:988 corresponding to the parameter of the 2D ferromag-
net K2CuF4. A smaller length of spin projections on the XY-plane near the impurity
corresponds to a larger value of the out-of-plane components. For smaller values of the
anisotropy, l > l�, the vortex is not captured by the impurity. In this almost isotropic
limit energies of vortices with a different location of their centers (on the site or be-
tween sites) is almost equal and the vortex can be shifted from the impurity virtually
without a change of its energy. In general the energy of the OP vortex localized on a
nonmagnetic impurity is less than the energy of the same vortex in the perfect system.
As a function of the parameter l the energy decreases at first slowly in the interval
½lc; l�	 and then very rapidly decreases to zero. As seen above, the copper metal-organ-

ic compounds have the anisotropy with
l ¼ 0:997 in which case pinning the
vortex seems to be impossible. On the
other hand, the layered ferromagnet
K2CuF4 doped with the impurity is evi-
dently appropriate for revealing the
vortex–impurity complex.
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Fig. 1. Out-of-plane vortex centered on the
magnetic impurity in the easy-plane ferro-
magnet (l ¼ 0:988). Arrows denote the
XY-projections of spins



However, if one assumes that the impurity has an effect on the anisotropic exchange
of adjacent spins with their neighbors, then this can result in changing the stability
property of the P vortex and critical values of l. If we assume that the exchange
l0 ¼ 0:9 then we find that lc shifts to higher values and becomes equal to 0:962. Hence
the onset of the bifurcation of the OP vortex is sensitive to changing interactions near
the impurity. In general this could give a possibility to observe the P-vortex–impurity
complex in a larger class of layered compounds.
It is important to note that if impurities are arranged in a regular structure then

vortice and antivortice are pinned by the impurities and form a periodic pattern. A
fragment of the pattern with four impurities and the P vortice and antivortex is shown
in Fig. 2.
The effect of a magnetic impurity is qualitatively the same as that of a nonmagnetic

impurity. In the OP vortex the spin of the impurity is perpendicular to the easy-plane
and does not disturb the symmetry of vortex configuration. In the P vortex the impurity
spin lies in the easy plane but the effective field on its site is zero hence the spin direc-
tion is arbitrary within the plane unless one considers an additional anisotropy. How-
ever, if one needs a variation of the energy of the vortex–impurity complex then the
magnetic doping allows this effectively. In fact, the total energy of the system with the
P-vortex–impurity complex does not depend on the value of interaction between host
and impurity spins. At the same time the ground state energy of the system with the
impurity changes explicitly. This leads to the possibility of controlling the variation of
energy of the P-vortex–impurity complex.
At last it is be noted that due to the symmetry of the Landau-Lifshitz equations (2)

all static solutions for the easy-plane ferromagnets with impurities are transformed into
corresponding solutions for the easy-plane antiferromagnets by reversing the direction
of the every second spin.
Before we present the data showing the influence of the impurities on the Skyrmion

properties it is remarked that they are dynamically unstable in magnets with weak
easy-axis single-ion anisotropy [3]. To stabilize the Skyrmion one has to add some defi-
nite types of interactions, e.g., the Dzyaloshinski-Moriya interaction [10], which actually

occurs in metal-organic compounds.
Nevertheless, we have found the static
Skyrmion-like solutions in the discrete
system with the magnetic impurity has
a long lifetime before it loses its stabi-
lity. Its energy is calculated and equal
to ES ¼ 12:36 that is close to 4p. The
XY-projection of the solution is pre-
sented in Fig. 3. Indeed the existence
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Fig. 2. Vortex–antivortex pattern in the
easy-plane ferromagnet with a regular loca-
tion of nonmagnetic impurities (l ¼ 0:7)



of the Skyrmion-impurity complex is
easily proved at least in the case of
the special relation between values of
host (Mn) and impurity (Cu) spins
and exchange constants: SMn=SCu ¼
jJCu�Mn=JMnj. In this situation the ac-
tion of the impurity on matrix spins ap-
pears to be equivalent to that of the
original spin. Then the solution is ob-
tained from the Skyrmion of the pure

system by a simple replacement of the host spin by the impurity ion. Thus, in real
metal-organic antiferromagnets with weak but complex anisotropies the Skyrmion–im-
purity complex may be accessible with the energy close to 4pJS2.
In conclusion, we note that the present consideration shows that the copper easy-

plane compounds with magnetic and nonmagnetic impurities are good candidates for
experimental realization and observation of stable vortex–antivortex patterns. The EPR
study in the crystals would allow to obtain estimates for the vortex energy and param-
eters of the spin–impurity interaction from analysis of the temperature-dependent line-
width data.
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Fig. 3. XY-projections of the Skyrmion-
like structure localized on a magnetic im-
purity in the easy-axis antiferromagnet
(a ¼ 1:1� 10�3)




