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Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear
devices
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A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission
systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices.
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INTRODUCTION

Efficient growth of the capacity of digital communication
systems can be achieved by increase of the channel bit rate—
the speed at which information symbols are transmitted. In-
creasing the channel rate assumes the utilization of shorter
time slots allocated for each information bit and, conse-
quently, of shorter carrier pulses. The propagation of ul-
trashort pulses is strongly affected by the fiber dispersion,
which results in large temporal broadening of the carrier
pulses. Because of the temporal broadening during propaga-
tion, the carrier pulse power spreads over many time slots
and, consequently, the accumulated effect of the instanta-
neous fiber nonlinearity tends to get averaged out. Signal
transmission using very short optical pulses is often referred
to as the quasilinear regime [1]. This regime is, in some
sense, opposite to soliton [2] or dispersion-managed (DM)
soliton [3] transmission, where fiber nonlinearity plays an
important role in preserving the pulse shapes during propa-
gation. Note that in the quasilinear regime, the in-line Kerr
nonlinearity is almost a “negative” factor contributing to the
destabilization and distortion of carrier pulses. Therefore a
certain amount of “constructive” nonlinearity is required to
stabilize ultrashort pulse propagation and thus to improve the
system performance. Recently, the periodic in-line deploy-
ment of nonlinear optical devices (NODs), such as nonlinear
optical loop mirrors (NOLMs), semiconductor saturable ab-
sorbers, and semiconductor amplifier-based devices, has
been demonstrated to be an effective technique of all-optical
signal regeneration [4—6], which may achieve stable pulse
propagation and virtually unlimited transmission distances in
high-speed, strongly DM optical fiber communication sys-
tems [5]. It has numerically been shown in Refs. [4,5] that,
under certain conditions, the interplay between fiber disper-
sion, the lumped nonlinearity provided by in-line NOLMs,
and the action of linear control elements, such as optical
filters, leads to the formation of autosolitons, which are pe-
riodically reproduced at the output of each segment of the
transmission line. The term “autosolitons” here means robust
localized pulses with the parameters prescribed by properties
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of the system, which occur in models combining conserva-
tive and dissipative dispersive and nonlinear terms [7—11].

The use of ultrashort optical pulses in fiber-optic commu-
nication leads to interesting physical regimes and different
mathematical models should be introduced to adequately de-
scribe such transmission systems. In this paper a theory is
developed to describe the optical signal transmission in DM
fiber transmission systems in the quasilinear regime, with
periodically in-line placed point NODs. We present a funda-
mental discrete mapping equation governing the carrier pulse
propagation in a unit cell of the transmission line. As a par-
ticular sample approach to the solution of this basic model,
we apply a variational method to determine the steady state
pulse characteristics. Without loss of generality, as a specific
practical application of the general theory, we consider a
system with in-line NOLMs.

THEORETICAL MODEL

The optical pulse propagation in a cascaded transmission
system with periodic variations of dispersion and nonlinear-
ity, frequency filtering, and NOD management can be de-
scribed by

OE 1
Pl
dz 2

,82(2)% +0(2)|[EPE=iG(z|E])E, (1)

where E(z,f) is the slowly varying pulse envelope in the
comoving system of coordinates, 8,(z) represents the varia-
tion in the group-velocity dispersion due to dispersion com-
pensation, and is assumed to be a periodic function of z with
the period L, B,(z)=pB»(z+L), and o is the fiber nonlinear
coefficient. It is customary to express (3, in terms of the
associated dispersion coefficient D via B,=—\2D/(2mc,),
where M\ is the carrier wavelength, ¢, is the speed of light,
and D is measured in ps/(nmkm). Function G(z,|E|?) ac-
counts for the signal attenuation due to fiber loss, the signal
amplification by optical amplifiers, the action of filters, and
the nonlinear gain at the NODs, and can be presented as
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In Eq. (2), we have assumed that amplifiers, filters, and
NODs are placed periodically in the system with the respec-
tive periods Z,, Z;, and Z,. y=0.05 In(10)« is the fiber loss
coefficient that accounts for the signal attenuation along the
fiber span before the kth amplifier, « is given in dB/km, and
expl/ ](‘,f_“l)zadz ¥(z)]-1 is the amplification coefficient after

the fiber span between the (k—1)th and kth amplifiers. A(z) is
the inverse Fourier transform of the filter transfer function,
and * represents the Fourier convolution. The NODs are
specified by their power-dependent transfer function f(P).
Hereafter, we will focus on loss (gain)-unbalanced fiber
NOLMs. The transfer function for such devices can be writ-
ten in the form

f(P)=a sin(bP)exp(icP), (3)

with a,b,c € R some given constants.

To simplify the full model given by system (1), we make
some justified physical assumptions. Here, we analyze the
case of linear propagation in fiber, when we can neglect the
nonlinear term in Eq. (1). Such a propagation regime corre-
sponds to the case when the nonlinear length Ly, =(oP,)~"
(P is the signal peak power) in the fiber is much larger than
the local dispersion length Lp=T2/|8,| (T is the pulse width).
The transformation of a pulse after propagation in one seg-
ment of the transmission line can be considered as the map-
ping of the input pulse into the output one. If we consider an
element of the transmission line that includes a NOD given
by Eq. (3), a piece of linear fiber of length Z,, and m filters,
the mapping of the signal, defined up to a phase factor w, can
be presented as

+0

dt'K(t =13 Zg) f(|U,(t")]D

—00

XU,(t"),

eiMUnH(t) =
n=0,1,.... (4)

The derived equation is one of the central results of the pa-
per. This mapping problem plays a fundamental role in the
description of fiber communication systems at high bit rates.
To obtain Eq. (4), we have assumed that each NOD is placed
immediately after an amplifier, and we have applied the
transformation U(z,0)=0""(2)E(z,1), where 0(z)
:exp[—ffk_l)zudz’y(z')] for (k-1)Z,<z<kZ,, and Q(z)=1
for z=kZ!. In Eq. (4), the signal is taken at the input point
nZ, to the NOD after any device prior to the NOD. The
kernel K describes the signal propagation in the unit cell Z,.
In the case when Gaussian filters are used, K can be written
in the form
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FIG. 1. One element of the periodic transmission system.

K(t-1"1Zy) =G/ i
0 2m(By + im/)2)

i(t—1')? }
2(By+im/3) |’

(5)

Xexp[—

where (;=mév,/ VIn2 is the filter bandwidth [6v; denotes
the full width at half maximum (FWHM) bandwidth], and
By=[ SZ)])ZO dz B,(z) is the total accumulated dispersion. In
Eq. (5), the excess gain G accounts for compensation of the
signal energy losses introduced by the NODs and filters in
the system. From the transmission point of view it is desir-
able to find (if exists) a steady state propagation regime in
which an optical pulse propagating along the transmission
line reproduces periodically at the output of each element of
the line. That corresponds to determining a fixed point of
mapping (4). Therefore in order to find the steady state pulse
shape U(z), one has to solve a nonlinear integral equation,
which stems from Eq. (4) if we put U, (t)=U,(1)=U(z). If
the steady state pulse is stable, then any initial signal within
the basin of attraction of the fixed point will gradually evolve
towards it after some maps.

AUTOSOLITON STRUCTURES

In this section, we demonstrate the feasibility of stable
autosoliton propagation guided by in-line NOLMs, by direct
numerical simulations of the basic propagation model [Eq.
(1)]. The sample transmission scheme used in the numerical
integration of Eq. (1) is depicted in Fig. 1. The transmission
line is composed of an equal number of positive (anomalous)
dispersion fiber (PDF) segments and negative (normal) dis-
persion fiber (NDF) segments. The dispersion map consists
of an alternation of a PDF-NDF block and a mirror NDF-
PDF block. Fiber parameters of practical importance are
used for the PDF and the NDF [5]. We note that fiber non-
linearity is included in the calculations. An optical amplifier
(OA), which compensates for the fiber loss, follows each of
the two blocks. The high values of the local dispersion of the
fibers together with the short pulse widths that are typically
used to operate the system at high data transmission rates
result in large broadening of the pulses during propagation.
These regimes are beyond the range where stable propaga-
tion of DM solitons has been observed [12]. A NOLM is
placed into the transmission line every an integer number p
of dispersion map periods, Zy,=pL. We note that in this case
Bo={B,)Zy=—NXD)Z,/(21c,) ({-) denotes the average over
the dispersion compensating period L). In the sample con-
figuration used here, Zy=391 km, and p=5. A single (m
=1) Gaussian optical filter (OF) is placed after the amplifier
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FIG. 2. Acquisition of the steady state in the space FWHM
pulse-width-chirp-parameter-peak power as viewed at the NOLM
input.

prior to the NOLM location. The loss-unbalanced NOLM
configuration is employed as an example, and preamplifica-
tion of the input pulses to the NOLM is used (see Ref. [5] for
details). Parameters a, b, and c¢ in Eq. (3) have the respective
values: 0.06369, 1.823, and 1.839. Following Ref. [5], the
system is operated such that the peak power of the steady
state pulses (if any exist) is in the region slightly past the first
peak of the continuous-wave power characteristic of the
NOLM.

Figure 2 shows an example of the evolution of the pulse
parameters in the system, measured stroboscopically at the
NOLM input point. In this example, an unchirped Gaussian
pulse is launched into the system, with the peak power P
=1.15 W (corresponding to 3.5 mW at the starting point of
the transmission) and the FWHM pulse width Tpwy=3 ps.
The system parameters are (D)=0.009 ps/(nmkm),
Ovy= yIn 2Q0,/m=0.1 THz, and G=627.0(28.0dB). The
pulse  chirp  parameter is calculated as C
=Im[*% dt U*(U,)?/ [*2 dr|UJ*. One may see from Fig. 2 that
the pulse parameters converge to a steady state after a short
initial transient. This result demonstrates the feasibility of
stable pulse propagation in the system, and indicates that the
use of in-line NOLMs converts the quasilinear transmission
regime into an autosoliton transmission regime, which is
strictly nonlinear [5]. We note that the same stroboscopic
picture as that in Fig. 2 can be obtained by simply iterating
mapping equation (4). Figure 3 shows the basin of attraction
of the steady state solution of Fig. 2 in the plane (Trwpm,C)-
To calculate Fig. 3, the initial pulse peak power has been set
to its steady state value. It is seen that there is a large toler-
ance to the initial pulse width and chirp, which indicates a
high degree of stability of the steady state solution. We have
also defined the tolerable limits of the stable pulse propaga-
tion to the filter bandwidth and the path-averaged dispersion
of the line. The results are shown in Fig. 4, where 5vf and
(D) are varied within a practical range of values. In Fig. 4,
the excess gain G is chosen such that the stationary pulse
peak power is approximately 1.15 W at the NOLM input.

SIMPLE APPROXIMATE APPROACH

As we pointed out previously, in order to find a steady
state pulse propagation regime, one has to solve mapping
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FIG. 3. Basin of attraction of the steady state solution of Fig. 2
in the plane FWHM pulse-width-chirp parameter.

integral equation (4) for the fixed points. While this can be
done numerically, for massive optimization of the system
parameters it is very useful to have a simplified approximate
method to find solutions of the basic model. Therefore here
we apply a simple variational approach. We noticed from full
numerics that the steady state pulse shape at the NOLM in-
put point can always be fitted well by a Gaussian profile.
Thus we choose a trial input pulse U(z) for the map as a
Gaussian-shaped pulse with (yet unknown) peak power Py,
root-mean-square (RMS) width Trys, and RMS chirp param-
eter Cpys: U, ()= VP exp[—12/(4Tays) +iCryst’]. The out-
put of the map U, (¢) given by Eq. (4) will be non-Gaussian
in general, but will have a close shape and will depend on
the  parameters of  the  input  signal, U,
=U,41(t; Py, Trvs» Crus)- Let us now demand that the peak
power, pulse width, and chirp of the output signal coincide
with those of the input Gaussian signal. This provides a sys-
tem of transcendental equations for the sought parameters
Py, Trms, and Crys,

1 e
Py=——= J dt|U,,,1(t; Py, Trmss Cruis) 2,
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FIG. 4. Limits of stable pulse propagation in the plane filter
bandwidth-average dispersion.
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FIG. 5. Steady state RMS pulse width (left axis) and RMS chirp
parameter (right axis) at the NOLM input versus filter bandwidth.

+m
f dt 2|U,,,1(t; Py, Trms Crumis)|*

2
Trvs = oo s
f dt|U,,.1(t; Py, Trpss, Crus)|*

—o0

+0C
Crvs = Imf dt U, (t; P, Trus, Cris)

—00

X [3,U,,,1(t;Po, Trms> Crus) I
+00

X[ dt|U,1(t: Po, Trys: Crui) [T (6)

—00

If the solution of system (6) exists, then it provides a varia-
tional approximation for the parameters of the steady state
pulse. In particular, one may use the Gaussian ansatz with
the found vaues of Py, Trys, and Crys @s an approximation
of the steady state pulse shape.

The theoretical predictions from the variational model
[Egs. (6)] have been compared with the results of full nu-
merical simulations. The steady state RMS pulse width and
RMS chirp parameter are plotted in Fig. 5 as a function of
the filter bandwidth, for (D)=0.009 ps/(nm km), and the

same values of G as used in Fig. 4. The steady state intensity
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FIG. 6. Intensity (left axis) and chirp (right axis) of the steady
state pulse at the NOLM input.

profile and chirp (first time derivative of the phase) of the
input pulse to the NOLM are plotted in Fig. 6, for év,
=0.1 THz. It can be seen that the results from the variational
model are in good agreement with the simulation results.

CONCLUSION

We have developed a theoretical model to describe the
ultrashort pulse propagation in fiber transmission systems in
the quasilinear regime, with periodic in-line deployment of
NOD:s. In the particular application with NOLMs, we have
numerically demonstrated that formation of autosolitons can
be observed in such systems, as a result of a balance between
the effects of dispersion in the transmission fibers, linear
control by optical filters, and nonlinear focusing in the
NOLMs. A variational principle has been applied to deter-
mine the steady state pulse characteristics, and the theoretical
analysis has been shown to accurately reproduce the results
of full numerical simulations.
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